Smooth semi-Lipschitz functions and almost isometries between Finsler manifolds
Author
dc.contributor.author
Daniilidis, Aris
Author
dc.contributor.author
Jaramillo, Jesús
Author
dc.contributor.author
Venegas M., Francisco
Admission date
dc.date.accessioned
2020-10-28T21:54:02Z
Available date
dc.date.available
2020-10-28T21:54:02Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Journal OF Functional Analysis Volumen: 279 Número: 8 Número de artículo: 108662 Nov 1 2020
es_ES
Identifier
dc.identifier.other
10.1016/j.jfa.2020.108662
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/177439
Abstract
dc.description.abstract
The convex cone SC1
SLip(X) of real-valued smooth semi-Lipschitz functions on a Finsler
manifold X is an order-algebraic structure that captures both the differentiable and the quasi-metric
feature of X. In this work we show that the subset of smooth semi-Lipschitz functions of constant
strictly less than 1, denoted SC1
1− (X), can be used to classify Finsler manifolds and to characterize
almost isometries between them, in the lines of the classical Banach-Stone and Mykers-Nakai theorems.
es_ES
Patrocinador
dc.description.sponsorship
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1171854
CMM-ANID (Chile)
AFB 170001
ECOS-ANID (Chile)
C18E04
ANID Doctorate Fellowship PFCHA/DOCTORADO NACIONAL (Chile)
2019-21191167
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1171854
PGC2018-097960-B-C22
PGC2018-097286-B-I00