Smooth semi-Lipschitz functions and almost isometries between Finsler manifolds
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Daniilidis, Aris
Cómo citar
Smooth semi-Lipschitz functions and almost isometries between Finsler manifolds
Abstract
The convex cone SC1
SLip(X) of real-valued smooth semi-Lipschitz functions on a Finsler
manifold X is an order-algebraic structure that captures both the differentiable and the quasi-metric
feature of X. In this work we show that the subset of smooth semi-Lipschitz functions of constant
strictly less than 1, denoted SC1
1− (X), can be used to classify Finsler manifolds and to characterize
almost isometries between them, in the lines of the classical Banach-Stone and Mykers-Nakai theorems.
Patrocinador
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1171854
CMM-ANID (Chile)
AFB 170001
ECOS-ANID (Chile)
C18E04
ANID Doctorate Fellowship PFCHA/DOCTORADO NACIONAL (Chile)
2019-21191167
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1171854
PGC2018-097960-B-C22
PGC2018-097286-B-I00
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Journal OF Functional Analysis Volumen: 279 Número: 8 Número de artículo: 108662 Nov 1 2020
Collections
The following license files are associated with this item: