Robust RL-based map-less local planning: Using 2D point clouds as observations
Author
dc.contributor.author
Leiva Castro, Francisco
Author
dc.contributor.author
Ruíz del Solar San Martín, Javier
Admission date
dc.date.accessioned
2020-11-02T21:06:03Z
Available date
dc.date.available
2020-11-02T21:06:03Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
IEEE Robotics and Automation Letters. Vol. 5, No. 4, (2020)
es_ES
Identifier
dc.identifier.other
10.1109/LRA.2020.3010732
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/177506
Abstract
dc.description.abstract
In this letter, we propose a robust approach to train map-less navigation policies that rely on variable size 2D point clouds, using Deep Reinforcement Learning (Deep RL). The navigation policies are trained in simulations using the DDPG algorithm. Through experimental evaluations in simulated and real-world environments, we showcase the benefits of our approach when compared to more classical RL-based formulations: better performance, the possibility to interchange sensors at deployment time, and to easily augment the environment observability through sensor preprocessing and/or sensor fusion. Videos showing trajectories traversed by agents trained with the proposed approach can be found in https://youtu.be/AzvRJyN6rwQ.
es_ES
Patrocinador
dc.description.sponsorship
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1201170
ANID-PIA
AFB180004
CONICYTPFCHA/Magister Nacional/2018
22182130
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
(IEEE) Institute of Electrical and Electronics Engineers