Robust RL-based map-less local planning: Using 2D point clouds as observations
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Leiva Castro, Francisco
Cómo citar
Robust RL-based map-less local planning: Using 2D point clouds as observations
Abstract
In this letter, we propose a robust approach to train map-less navigation policies that rely on variable size 2D point clouds, using Deep Reinforcement Learning (Deep RL). The navigation policies are trained in simulations using the DDPG algorithm. Through experimental evaluations in simulated and real-world environments, we showcase the benefits of our approach when compared to more classical RL-based formulations: better performance, the possibility to interchange sensors at deployment time, and to easily augment the environment observability through sensor preprocessing and/or sensor fusion. Videos showing trajectories traversed by agents trained with the proposed approach can be found in https://youtu.be/AzvRJyN6rwQ.
Patrocinador
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
CONICYT FONDECYT
1201170
ANID-PIA
AFB180004
CONICYTPFCHA/Magister Nacional/2018
22182130
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
IEEE Robotics and Automation Letters. Vol. 5, No. 4, (2020)
Collections
The following license files are associated with this item: