About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

A Multi-resolution Approximation for Time Series

Artículo
Thumbnail
Open/Download
IconA-Multi-resolution-Approximation-for-Time-Series.pdf (208.7Kb)
Access note
Acceso a solo metadatos
Publication date
2020
Metadata
Show full item record
Cómo citar
Sánchez, Heider
Cómo citar
A Multi-resolution Approximation for Time Series
.
Copiar
Cerrar

Author
  • Sánchez, Heider;
  • Bustos Cárdenas, Benjamín;
Abstract
Time series is a common and well-known way for describing temporal data. However, most of the state-of-the-art techniques for analysing time series have focused on generating a representation for a single level of resolution. For analysing of a time series at several levels of resolutions, one would require to compute different representations, one for each resolution level. We introduce a multi-resolution representation for time series based on local trends and mean values. We require the level of resolution as parameter, but it can be automatically computed if we consider the maximum resolution of the time series. Our technique represents a time series using trend-value pairs on each segment belonging to a resolution level. To provide a useful representation for data mining tasks, we also propose dissimilarity measures and a symbolic representation based on the SAX technique for efficient similarity search using a multi-resolution indexing scheme. We evaluate our method for classification and discord discovery tasks over a diversity of data domains, achieving a better performance in terms of efficiency and effectiveness compared with some of the best-known classic techniques. Indeed, for some of the experiments, the time series mining algorithms using our multi-resolution representation were an order of magnitude faster, in terms of distance computations, than the state of the art.
Indexation
Artículo de publicación ISI
 
Artículo de publicación SCOPUS
 
Identifier
URI: https://repositorio.uchile.cl/handle/2250/177611
DOI: 10.1007/s11063-018-9929-y
Quote Item
Neural Processing Letters Volumen: 52 Número: 1 Páginas: 75-96 Aug 2020
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account