The Calderon problem for quasilinear elliptic equations
Artículo

Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Muñoz Cerón, Claudio
Cómo citar
The Calderon problem for quasilinear elliptic equations
Author
Abstract
In this paper we show uniqueness of the conductivity for the quasilinear Calderon's inverse problem. The nonlinear conductivity depends, in a nonlinear fashion, of the potential itself and its gradient. Under some structural assumptions on the direct problem, a real-valued conductivity allowing a small analytic continuation to the complex plane induce a unique Dirichlet-to-Neumann (DN) map. The method of proof considers some complex-valued, linear test functions based on a point of the boundary of the domain, and a linearization of the DN map placed at these particular set of solutions.
Patrocinador
ERC (France)
291214
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1150202
Conicyt (U. Chile)
PIA AFB-170001
Millennium Nucleus Center for Analysis of PDE
NC130017
National Science Foundation (NSF)
IAS, HKUST
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Ann. I.H.Poincaré – AN37 (2020) 1143–1166
Collections
The following license files are associated with this item: