The histogram Poisson, lab ele d multi-Bernoulli multi-target tracking filter
Artículo

Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Cament Riveros, Leonardo
Cómo citar
The histogram Poisson, lab ele d multi-Bernoulli multi-target tracking filter
Abstract
A Random Finite Set (RFS) based multi-target filter is proposed, which utilizes a labeled Multi-Bernoulli distribution to model the multi-target state, together with a Poisson RFS distribution to model target birth. Referred to as the Poisson Labeled Multi-Bernoulli (PLMB) filter, results show that, in simulated environments, it outperforms the Labeled Multi-Bernoulli (LMB), δ-Generalized Labeled Multi-Bernoulli ( δ-GLMB) and Labeled Multi-Bernoulli Mixtures (LMBM) filters under general target birth scenarios. An algorithm based on a histogram of Gibbs samples is also proposed which efficiently generates a posterior labeled Multi-Bernoulli distribution in a simple manner using a histogram of the state-measurement asso- ciations obtained by a Gibbs sampler. The histogram approach is readily applicable to all Multi-Bernoulli based filters and is demonstrated in the form of the Histogram-PLMB (HPLMB) filter.
Patrocinador
United States Department of Defense
Air Force Office of Scientific Research (AFOSR)
FA9550-17-1-0386
CONICYT/PIA Project
AFB180004
Comisión Nacional de Investigación Científica y Tecnológica (CONICYT)
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1190979
3180319
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Signal Processing 176 (2020) 107714
Collections
The following license files are associated with this item: