Show simple item record

Authordc.contributor.authorValente, José Manuel 
Authordc.contributor.authorMaldonado Alarcón, Sebastián 
Admission datedc.date.accessioned2021-03-28T22:22:34Z
Available datedc.date.available2021-03-28T22:22:34Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationExpert Systems with Applications 160 (2020) 113729es_ES
Identifierdc.identifier.other10.1016/j.eswa.2020.113729
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/178836
Abstractdc.description.abstractn this paper, we propose a novel support vector regression (SVR) approach for time series analysis. An efficient forward feature selection strategy has been designed for dealing with high-frequency time series with multiple seasonal periods. Inspired by the literature on feature selection for support vector classification, we designed a technique for assessing the contribution of additional covariates to the SVR solution, including them in a forward fashion. Our strategy extends the reasoning behind Auto-ARIMA, a well-known approach for automatic model specification for traditional time series analysis, to kernel machines. Experiments on well-known high-frequency datasets demonstrate the virtues of the proposed method in terms of predictive performance, confirming the virtues of an automatic model specification strategy and the use of nonlinear predictors in time series forecasting. Our empirical analysis focus on the energy load forecasting task, which is arguably the most popular application for high-frequency, multi-seasonal time series forecastinges_ES
Patrocinadordc.description.sponsorshipComisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT PIA/BASAL AFB180003 Comisión Nacional de Investigación Científica y Tecnológica (CONICYT) CONICYT FONDECYT 1181809 1200221es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Sourcedc.sourceExpert Systems with Applicationses_ES
Keywordsdc.subjectSupport vector regressiones_ES
Keywordsdc.subjectFeature selectiones_ES
Keywordsdc.subjectForecastinges_ES
Keywordsdc.subjectEnergy load forecastinges_ES
Keywordsdc.subjectAutomatic model specificationes_ES
Títulodc.titleSVR-FFS: A novel forward feature selection approach for high-frequency time series forecasting using support vector regressiones_ES
Document typedc.typeArtículo de revistaes_ES
dcterms.accessRightsdcterms.accessRightsAcceso Abierto
Catalogueruchile.catalogadorctces_ES
Indexationuchile.indexArtículo de publicación ISI
Indexationuchile.indexArtículo de publicación SCOPUS


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile