Refining the partition for multifold conic optimization problems
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Ramírez Cabrera, Héctor
Cómo citar
Refining the partition for multifold conic optimization problems
Author
Abstract
In this paper, we give a unified treatment of two different definitions of complementarity partition of multifold conic programs introduced independently in Bonnans and Ramirez [Perturbation analysis of second-order cone programming problems, Math Program. 2005;104(2-30):205-227] for conic optimization problems, and in Pena and Roshchina [A complementarity partition theorem for multifold conic systems, Math Program. 2013;142(1-2):579-589] for homogeneous feasibility problems. We show that both can be treated within the same unified geometric framework and extend the latter notion to optimization problems. We also show that the two partitions do not coincide, and their intersection gives a seven-set index partition. Finally, we demonstrate that the partitions are preserved under the application of nonsingular linear transformations, and in particular, that a standard conversion of a second-order cone program into a semidefinite programming problem preserves the partitions.
Patrocinador
ANID (Chile) under REDES
180032
Australian Research Council
DE150100240
FONDECYT (Fondo de Fomento al Desarrollo Cientifico y Tecnologico) from ANID (Chile)
1160204
1201982
Comision Nacional de Investigacion Cientifica y Tecnologica from ANID (Chile)
CMM-AFB 170001
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Optimization Volumen: 69 Número: 11 Páginas: 2489-2507 Oct 2020
Collections
The following license files are associated with this item: