Critical wind turbine components prognostics: a comprehensive review
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Rezamand, Milad
Cómo citar
Critical wind turbine components prognostics: a comprehensive review
Author
Abstract
As wind energy is becoming a significant utility source, minimizing the operation and maintenance (O&M) expenses has raised a crucial issue to make wind energy competitive to fossil fuels. Wind turbines (WTs) are subject to unexpected failures due to operational and environmental conditions, aging, and so on. An accurate estimation of time to failures assures reliable power production and lower maintenance costs. In recent years, a notable amount of research has been undertaken to propose prognosis techniques that can be employed to forecast the remaining useful life (RUL) of wind farm assets. This article provides a recent literature review on modeling developments for the RUL prediction of critical WT components, including physics-based, artificial intelligence (AI)-based, stochastic-based, and hybrid prognostics. In particular, the pros and cons of the prognosis models are investigated to assist researchers in selecting proper models for certain applications of WT RUL forecast. Our comprehensive review has revealed that hybrid methods are now the leading and most accurate tools for WT failure predictions over individual hybrid components. Strong candidates for future research include the consideration of variable operating environments, component interaction, physics-based prognostics, and the Bayesian application in the development of WT prognosis methods.
Patrocinador
Natural Sciences and Engineering Research Council of Canada (NSERC)
860002
Ontario Centres of Excellence (OCE)
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
1170044
Advanced Center for Electrical and Electronic Engineering (AC3E) under Basal Project
FB0008
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
IEEE Transactions on Instrumentation and Measurement Vol. 69, No. 12, December 2020
Collections
The following license files are associated with this item: