Directional dynamical cubes for minimal Z(d)-systems
Artículo

Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Cabezas, Christopher
Cómo citar
Directional dynamical cubes for minimal Z(d)-systems
Abstract
We introduce the notions of directional dynamical cubes and directional regionally proximal relation defined via these cubes for a minimal Z(d)-system. X; T-1, ...,T-d). We study the structural properties of systems that satisfy the so-called unique closing parallelepiped property and we characterize them in several ways. In the distal case, we build the maximal factor of a Z(d)-system (X, T-1, ...., T-d) that satisfies this property by taking the quotient with respect to the directional regionally proximal relation. Finally, we completely describe distal Z(d)-systems that enjoy the unique closing parallelepiped property and provide explicit examples.
Patrocinador
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT
11160061
AFB-170001
DCS 17 - MATH 01
Indexation
Artículo de publicación ISI Artículo de publicación SCOPUS
Quote Item
Ergodic Theory and Dynamical Systems Volumen: 40 Número: 12 Páginas: 3257-3295 (2020)
Collections
The following license files are associated with this item: