Show simple item record

Professor Advisordc.contributor.advisorOrchard Concha, Marcos
Professor Advisordc.contributor.advisorMuñoz Carpintero, Diego
Authordc.contributor.authorFutalef Gallardo, Juan Pablo 
Associate professordc.contributor.otherSáez Hueichapan, Doris
Associate professordc.contributor.otherAuat Cheein, Fernando
Admission datedc.date.accessioned2021-06-05T20:02:47Z
Available datedc.date.available2021-06-05T20:02:47Z
Publication datedc.date.issued2021
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/179975
General notedc.descriptionTesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Eléctricaes_ES
General notedc.descriptionMemoria para optar al título de Ingeniero Civil Eléctrico
Abstractdc.description.abstractElectric Vehicles (EVs) are attractive candidates to reduce transportation's environmental impact. Nonetheless, their low driving ranges, high recharging times, and the poor recharging infrastructure prevent their entire deployment. In this thesis work, we develop a strategy to manage EV fleets for delivery purposes efficiently. The main objective is to find and update the least-cost routes, charging plans, and departure times that allow an EV fleet to visit all destinations, subject to several operational constraints and real-world conditions, a problem known as the Electric Vehicle Routing Problem (E-VRP). The strategy consists of splitting the operation into two stages: pre-operation and online operation. We calculate initial routes in the pre-operation by solving an offline E-VRP (Off-EVRP). In the online stage, the dispatcher updates the routes based on traffic state realizations and EVs' state measurements by solving an online E-VRP (On-E-VRP). We solve both E-VRP variants with Genetic Algorithms (GA) using a novel encoding for each case. The overall strategy is tested with two experiments. Results show that solving the Off-E-VRP provides good initial route candidates, whereas solving the On-E-VRP can improve the operation and service quality. Finally, the developed decision-making system enables the fleet to fulfill the delivery purpose efficiently.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectVehículos eléctricoses_ES
Keywordsdc.subjectAlgoritmos genéticoses_ES
Keywordsdc.subjectAsignación de tráficoes_ES
Keywordsdc.subjectFlujo de tráficoes_ES
Keywordsdc.subjectElectric Vehicle Routing Problemes_ES
Títulodc.titleA decision-making system for managing electric vehicle fleets subject to multiple operational constraintses_ES
Document typedc.typeTesis
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.titulacionuchile.titulacionDoble Titulaciónes_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile