Quantitative error term in the counting problem on Veech wind-tree models
Author
dc.contributor.author
Pardo, Ángel
Admission date
dc.date.accessioned
2021-08-09T15:27:23Z
Available date
dc.date.available
2021-08-09T15:27:23Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze (2020) volumen 21 Págs. 495-534
es_ES
Identifier
dc.identifier.issn
0391-173X
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/181160
Abstract
dc.description.abstract
We study periodic wind-tree models, billiards in the plane endowed
with Z2-periodically located identical connected symmetric right-angled
obstacles. We exhibit e ective asymptotic formulas for the number of periodic
billiard trajectories (up to isotopy and Z2-translations) on Veech wind-tree
billiards, that is, wind-tree billiards whose underlying compact translation surfaces
are Veech surfaces. This is the case, for example, when the side-lengths
of the obstacles are rational. We show that the error term depends on spectral
properties of the Veech group and give explicit estimates in the case when
obstacles are squares of side length 1=2.
es_ES
Patrocinador
dc.description.sponsorship
LabEx PERSYVAL-Lab ANR-11-LABX-0025-01
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT 3190257
ANID-AFB 170001