Quantitative error term in the counting problem on Veech wind-tree models
Artículo
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Pardo, Ángel
Cómo citar
Quantitative error term in the counting problem on Veech wind-tree models
Author
Abstract
We study periodic wind-tree models, billiards in the plane endowed
with Z2-periodically located identical connected symmetric right-angled
obstacles. We exhibit e ective asymptotic formulas for the number of periodic
billiard trajectories (up to isotopy and Z2-translations) on Veech wind-tree
billiards, that is, wind-tree billiards whose underlying compact translation surfaces
are Veech surfaces. This is the case, for example, when the side-lengths
of the obstacles are rational. We show that the error term depends on spectral
properties of the Veech group and give explicit estimates in the case when
obstacles are squares of side length 1=2.
Patrocinador
LabEx PERSYVAL-Lab ANR-11-LABX-0025-01
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT 3190257
ANID-AFB 170001
Indexation
Artículo de publicación ISI
Quote Item
Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze (2020) volumen 21 Págs. 495-534
Collections
The following license files are associated with this item: