Sign-changing blowing-up solutions for thecritical nonlinear heat equation
Artículo
Open/ Download
Access note
Acceso Abierto
Publication date
2020Metadata
Show full item record
Cómo citar
Pino, Manuel del
Cómo citar
Sign-changing blowing-up solutions for thecritical nonlinear heat equation
Author
Abstract
Let Omega be a smooth bounded domain in R-n and denote the regular part of the Green function on Omega with Dirichlet boundary condition by H(x, y). Assume the integer k0 is sufficiently large, q is an element of Omega and n >= 5. For k >= k(0) we prove that there exist initial data u0 and smooth parameter functions xi(t) -> q and 0 < mu(t) -> 0 for t ->+infinity such that the solution uq of the critical nonlinear heat equation
{u(t) = Delta u + vertical bar u vertical bar(4/n-2)u in Omega x (0, infinity) u = 0 on partial derivative Omega x (0, infinity) u(., 0) = u(0) in Omega
has the form
u(q)(x, t) approximate to mu(t)(-n-2/2) (Q(k)(x-xi(t)/mu(t))-H(x, q)),
where the profile Q(k) is the non-radial sign-changing solution of the Yamabe equation
Delta Q + vertical bar Q vertical bar(4/n-2) Q=0 in R-n,
constructed in [9]. In dimension 5 and 6 we also investigate the stability of u(q) (x, t).
Patrocinador
Royal Society Professorship (UK)
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT PIA/BASAL
Natural Sciences and Engineering Research Council of Canada (NSERC)
National Natural Science Foundation of China (NSFC) 11301374
China Scholarship Council
Fondecyt 1160135
Indexation
Artículo de publicación ISI
Quote Item
Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze (2020) V. 21 Págs. 569-641
Collections
The following license files are associated with this item: