Show simple item record

Authordc.contributor.authorFigueroa Barraza, Joaquín Eduardo 
Authordc.contributor.authorGuarda Brauning, Luis 
Authordc.contributor.authorBenites Pérez, Ruben 
Authordc.contributor.authorBittencourt Morais, Carlos 
Authordc.contributor.authorRamos Martins, Marcelo 
Authordc.contributor.authorLópez Droguett, Enrique 
Admission datedc.date.accessioned2021-08-17T18:27:58Z
Available datedc.date.available2021-08-17T18:27:58Z
Publication datedc.date.issued2020
Cita de ítemdc.identifier.citationProceedings of the Institution of Mechanical Engineers part o-journal of risk and reliability Article Number: 1748006X20976817 Dec 2020es_ES
Identifierdc.identifier.other10.1177/1748006X20976817
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/181287
Abstractdc.description.abstractDue to its capital-intensive nature, the Oil and Gas industry requires high operational standards to meet safety and environmental requirements, while maintaining economical returns. In this context, maintenance policies play a crucial role in the avoidance of unplanned downtimes and enhancement of productivity. In particular, Condition-Based Maintenance is an approach in which maintenance actions are performed depending on the assets' health state that is evaluated through different kinds of sensors. In this paper, Deep Learning methods are explored and different models are proposed for health state prognostics of physical assets in two real-life cases from the Oil and Gas industry: a Natural Gas treatment plant in an offshore production platform where elevated levels of CO2 must be predicted, and a sea water injection pump for oil extraction stimulation, in which several degradation levels must be predicted. A general methodology for preprocessing the available multi-sensor data and developing proper models is proposed and apply in both case studies. In the first one, a LSTM autoencoder is developed, achieving precision values over 83.5% when predicting anomalous states up to 8 h ahead. In the second case study, a CNN-LSTM model is proposed for the pump's health state prognostics 48 h ahead, achieving precision values above 99% for all possible pump health states.es_ES
Patrocinadordc.description.sponsorshipConselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 308712/2019-6es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSagees_ES
Sourcedc.sourceProceedings of the Institution of Mechanical Engineers part o-journal of risk and reliabilityes_ES
Keywordsdc.subjectDeep learninges_ES
Keywordsdc.subjectNatural gases_ES
Keywordsdc.subjectWater injection systemes_ES
Keywordsdc.subjectCNNes_ES
Keywordsdc.subjectLSTMes_ES
Keywordsdc.subjectAutoencoderses_ES
Keywordsdc.subjectOil and Gas industryes_ES
Keywordsdc.subjectPrognosticses_ES
Títulodc.titleDeep learning health state prognostics of physical assets in the Oil and Gas industryes_ES
Document typedc.typeArtículo de revista
dcterms.accessRightsdcterms.accessRightsAcceso a solo metadatoses_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publicación ISIes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record