About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Artículos de revistas
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Deep learning health state prognostics of physical assets in the Oil and Gas industry

Artículo
Thumbnail
Open/Download
IconDeep-learning-health.pdf (641.2Kb)
Access note
Acceso a solo metadatos
Publication date
2020
Metadata
Show full item record
Cómo citar
Figueroa Barraza, Joaquín Eduardo
Cómo citar
Deep learning health state prognostics of physical assets in the Oil and Gas industry
.
Copiar
Cerrar
Author
  • Figueroa Barraza, Joaquín Eduardo;
  • Guarda Brauning, Luis;
  • Benites Pérez, Ruben;
  • Bittencourt Morais, Carlos;
  • Ramos Martins, Marcelo;
  • López Droguett, Enrique;
Abstract
Due to its capital-intensive nature, the Oil and Gas industry requires high operational standards to meet safety and environmental requirements, while maintaining economical returns. In this context, maintenance policies play a crucial role in the avoidance of unplanned downtimes and enhancement of productivity. In particular, Condition-Based Maintenance is an approach in which maintenance actions are performed depending on the assets' health state that is evaluated through different kinds of sensors. In this paper, Deep Learning methods are explored and different models are proposed for health state prognostics of physical assets in two real-life cases from the Oil and Gas industry: a Natural Gas treatment plant in an offshore production platform where elevated levels of CO2 must be predicted, and a sea water injection pump for oil extraction stimulation, in which several degradation levels must be predicted. A general methodology for preprocessing the available multi-sensor data and developing proper models is proposed and apply in both case studies. In the first one, a LSTM autoencoder is developed, achieving precision values over 83.5% when predicting anomalous states up to 8 h ahead. In the second case study, a CNN-LSTM model is proposed for the pump's health state prognostics 48 h ahead, achieving precision values above 99% for all possible pump health states.
Patrocinador
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ) 308712/2019-6
Indexation
Artículo de publicación ISI
Identifier
URI: https://repositorio.uchile.cl/handle/2250/181287
DOI: 10.1177/1748006X20976817
Quote Item
Proceedings of the Institution of Mechanical Engineers part o-journal of risk and reliability Article Number: 1748006X20976817 Dec 2020
Collections
  • Artículos de revistas
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account