Interoceptive insular cortex participates in sensory processing of gastrointestinal malaise and associated behaviors
Author
dc.contributor.author
Aguilar Rivera, Marcelo
Author
dc.contributor.author
Kim, Sanggyun
Author
dc.contributor.author
Coleman, Todd P.
Author
dc.contributor.author
Maldonado, Pedro E.
Author
dc.contributor.author
Torrealba, Fernando
Admission date
dc.date.accessioned
2021-08-23T23:08:58Z
Available date
dc.date.available
2021-08-23T23:08:58Z
Publication date
dc.date.issued
2020
Cita de ítem
dc.identifier.citation
Scientific Reports (2020) 10:21642
es_ES
Identifier
dc.identifier.other
10.1038/s41598-020-78200-w
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/181419
Abstract
dc.description.abstract
The insular cortex plays a central role in the perception and regulation of bodily needs and emotions. Its modular arrangement, corresponding with different sensory modalities, denotes a complex organization, and reveals it to be a hub that is able to coordinate autonomic and behavioral responses to many types of stimuli. Yet, little is known about the dynamics of its electrical activity at the neuronal level. We recorded single neurons in behaving rats from the posterior insula cortex (pIC), a subdivision considered as a primary interoceptive cortex, during gastrointestinal (GI) malaise, a state akin to the emotion of disgust in humans. We found that a large proportion of pIC neurons were modulated during the rodent compensatory behaviors of lying on belly (LOB) and Pica. Furthermore, we demonstrated that LOB was correlated with low-frequency oscillations in the field potentials and spikes at the theta (8 Hz) band, and that low-frequency electrical microstimulation of pIC elicited LOB and Pica. These findings demonstrate that pIC neurons play a critical role in GI malaise perception, and that the pIC influences the expression of behaviors that alleviate GI malaise. Our model provides an accessible approach at the single cell level to study innate emotional behaviors, currently elusive in humans.
es_ES
Patrocinador
dc.description.sponsorship
P09-015-F
P10-001-F
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT 1130042
ACT-66