Show simple item record

Professor Advisordc.contributor.advisorOrchard Concha, Marcos
Authordc.contributor.authorLey, Christopher Paul 
Associate professordc.contributor.otherGoebel, Kai
Associate professordc.contributor.otherSilva Sánchez, Jorge
Associate professordc.contributor.otherAguero Vásquez, Juan
Admission datedc.date.accessioned2021-09-09T20:37:07Z
Available datedc.date.available2021-09-09T20:37:07Z
Publication datedc.date.issued2021
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/181934
General notedc.descriptionTesis para optar al grado de Doctor en Ingeniería Eléctricaes_ES
Abstractdc.description.abstractThis research focuses on a Hybrid Neural Adaptive State Space Model (NASSM), the purpose of which is to solve the complex problem of accurately characterising the ever changing (non-measurable) polarising impedance multi-dimensional surface and capacity degradation of a Lithium-Ion battery. This is achieved by proposing a novel strategy and architecture to infer these critical battery parameters simultaneously, directly from operational data, avoiding the need of costly off-line testing procedures. The NASSM infers a representational general surface model of the polarising impedance multi-dimensional surface by partially embedding a multi-layer perceptron (or deep neural network), within the hidden state representation and uses Variational Sequential Monte Carlo to infer the parameterisation of said surface as well as the total energy value in order to adapt the model to these changing (degrading) values. Training is performed online with experimental operational data and it is demonstrated that this methodology allows the model to perform accurate predictions of the probability of when a generic battery management system would disconnect the the battery due to the terminal voltage falling below a predefined threshold (a physical constraint). The results are compared to the state of the art on experimental data.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectCeldas de litio
Keywordsdc.subjectMedición
Keywordsdc.subjectMétodo de Monte Carlo
Títulodc.titleAccurate inference of the internal polarising impedance surface and total energy capacity - enabling precise Lithium - Ion battery cell voltage and power prognosises_ES
Document typedc.typeTesis
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile