Show simple item record

Authordc.contributor.authorMeruane Naranjo, Viviana
Authordc.contributor.authorAichele Figueroa, Diego
Authordc.contributor.authorRuiz García, Rafael
Authordc.contributor.authorLópez Droguett, Enrique
Admission datedc.date.accessioned2021-10-15T14:25:50Z
Available datedc.date.available2021-10-15T14:25:50Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationShock and Vibration Volume 2021, Article ID 1483594, 12 pageses_ES
Identifierdc.identifier.other10.1155/2021/1483594
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182297
Abstractdc.description.abstractThe vibrational behavior of composite structures has been demonstrated as a useful feature for identifying debonding damage. The precision of the damage localization can be greatly improved by the addition of more measuring points. Therefore, full-field vibration measurements, such as those obtained using high-speed digital image correlation (DIC) techniques, are particularly useful. In this study, deep learning techniques, which have demonstrated excellent performance in image classification and segmentation, are incorporated into a novel approach for assessing damage in composite structures. This article presents a damage-assessment algorithm for composite sandwich structures that uses full-field vibration mode shapes and deep learning. First, the vibration mode shapes are identified using high-speed 3D DIC measurements. Then, Gaussian process regression is implemented to estimate the mode shape curvatures, and a baseline-free gapped smoothing method is applied to compute the damage images. The damage indices, which are represented as grayscale images, are processed using a convolutional-neural-network-based algorithm to automatically identify damaged regions. The proposed methodology is validated using numerical and experimental data from a composite sandwich panel with different damage configurations.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1170535 Appeared in source as:Chilean National Fund for Scientific and Technological Development (FONDECYT) 1190720es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherHindawies_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceShock and Vibrationes_ES
Keywordsdc.subjectModees_ES
Keywordsdc.subjectPlatees_ES
Títulodc.titleA deep learning framework for damage assessment of composite sandwich structureses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States