Show simple item record

Professor Advisordc.contributor.advisorSoto Bertrán, Rodrigo
Authordc.contributor.authorPérez Verdugo, Fernanda Laura
Associate professordc.contributor.otherConcha Nordemann, Miguel
Associate professordc.contributor.otherDumais, Jacques
Associate professordc.contributor.otherFalcón Beas, Claudio
Associate professordc.contributor.otherHenkes, Silke
Associate professordc.contributor.otherJoanny, Jean-Francois
Admission datedc.date.accessioned2021-11-02T20:43:22Z
Available datedc.date.available2021-11-02T20:43:22Z
Publication datedc.date.issued2021
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/182524
Abstractdc.description.abstractThis thesis aims to develop a framework to analyze the properties of epithelial tissues, taking them as an example of active matter. Understanding their mechanical behavior is of interest for biologists, physicists, and others. Several works have exploited the idea of polarized activity as an internal force, producing, for example, cellular migration. Here, instead, we use a non-polarized system in which the interaction between the elements gives the direction of motion and where novel active scalar terms are considered. By performing analytical calculations using the vertex model, we find instabilities characterized by the coupling of some particular deformation modes that appear when the system is under stress or when cellular activity is considered, both applied homogeneously. We show an excellent agreement with numerical simulation, where the non-convexity of the cells is a geometrical proxy of the instabilities. When we consider activity in a single cell of the system, mimicking apical constrictions observed in several biological processes, we observe different geometrical responses depending on which cellular region is the active one: if it is the medial region, the active cell takes an anisotropic shape; if it is the perimeter, then the active cell tends to get an isotropic shape. We apply this analysis to the study of apical contraction pulses observed experimentally on frustrated cellular divisions in the blastula stage of the annual killifish Austrolebias nigripinnis. From an optimization process of geometrical observables, we can discriminate the type of activity that better describes the evolution of the system and also obtain the best fit of all parameters of the vertex model, globals, and specific for each active event. To compare the micro and macro-scale, we describe a continuum model reported in the literature, inspired by the vertex model, obtaining a continuum version of the stress tensor. We include the cellular activity in the model, both medial and perimeter, in an active Gaussian region and study the states in mechanical equilibrium and the dynamical evolution of the system, both with the continuum model and numerical simulations of the vertex model. We show an excellent agreement between both descriptions when rescaling the time-scales between them, and the active contractility of the perimeter. To analyze the self-organization, we perform numerical simulations of a non-polarized-fluctuating tissue, in which activity is inspired in the continuum reconstruction of the cytoskeleton. We calculate several static structure factors and find a scale separation that differentiates between a micro and a macro-scale in the model. Also, the response shows compression waves in the long-wavelength regime and an inverse energy cascade. In the end, we present the general conclusions of our work and its perspective in the future.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Keywordsdc.subjectMateria activa
Keywordsdc.subjectMecanobiologia
Keywordsdc.subjectTejidos epiteliales
Keywordsdc.subjectEpithelial tissues
Títulodc.titleStatistical properties of a non-polarized active tissuees_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Físicaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.gradoacademicouchile.gradoacademicoDoctoradoes_ES
uchile.notadetesisuchile.notadetesisTesis para optar al grado de Doctora en Ciencias, Mención Físicaes_ES


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States