Show simple item record

Authordc.contributor.authorGómez Virgilio, Laura
Authordc.contributor.authorLuarte Navarro, Alejandro Ernesto
Authordc.contributor.authorPonce de la Vega, Daniela Paz
Authordc.contributor.authorBruna Jara, Bárbara Alexandra
Authordc.contributor.authorBehrens Pellegrino, María Isabel Ofelia
Admission datedc.date.accessioned2021-12-02T14:44:16Z
Available datedc.date.available2021-12-02T14:44:16Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationInt. J. Mol. Sci. 2021, 22, 6311es_ES
Identifierdc.identifier.other10.3390/ijms22126311
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/183019
Abstractdc.description.abstractAmong all the proposed pathogenic mechanisms to understand the etiology of Alzheimer's disease (AD), increased oxidative stress seems to be a robust and early disease feature where many of those hypotheses converge. However, despite the significant lines of evidence accumulated, an effective diagnosis and treatment of AD are not yet available. This limitation might be partially explained by the use of cellular and animal models that recapitulate partial aspects of the disease and do not account for the particular biology of patients. As such, cultures of patient-derived cells of peripheral origin may provide a convenient solution for this problem. Peripheral cells of neuronal lineage such as olfactory neuronal precursors (ONPs) can be easily cultured through non-invasive isolation, reproducing AD-related oxidative stress. Interestingly, the autofluorescence of key metabolic cofactors such as reduced nicotinamide adenine dinucleotide (NADH) can be highly correlated with the oxidative state and antioxidant capacity of cells in a non-destructive and label-free manner. In particular, imaging NADH through fluorescence lifetime imaging microscopy (FLIM) has greatly improved the sensitivity in detecting oxidative shifts with minimal intervention to cell physiology. Here, we discuss the translational potential of analyzing patient-derived ONPs non-invasively isolated through NADH FLIM to reveal AD-related oxidative stress. We believe this approach may potentially accelerate the discovery of effective antioxidant therapies and contribute to early diagnosis and personalized monitoring of this devastating disease.es_ES
Patrocinadordc.description.sponsorshipSecretaria de Educacion, Ciencia, Tecnologia e Innovacion de la Ciudad de Mexico (SECTEI)es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceInternational Journal of Molecular Scienceses_ES
Keywordsdc.subjectOxidative stresses_ES
Keywordsdc.subjectFLIMes_ES
Keywordsdc.subjectAlzheimer's diseasees_ES
Títulodc.titleAnalyzing olfactory neuron precursors non-invasively isolated through NADH FLIM as a potential tool to study oxidative stress in Alzheimer’s diseasees_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States