Show simple item record

Authordc.contributor.authorAraujo Pardo, Gabriela
Authordc.contributor.authorMatamala Vásquez, Martín Ignacio
Admission datedc.date.accessioned2021-12-15T11:08:30Z
Available datedc.date.available2021-12-15T11:08:30Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationEuropean Journal of Combinatorics Volume 97 Article Number 103374 Oct 2021es_ES
Identifierdc.identifier.other10.1016/j.ejc.2021.103374
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/183224
Abstractdc.description.abstractIn this work we present a version of the so called Chen and Chv´atal’s conjecture for directed graphs. A line of a directed graph D is defined by an ordered pair (u, v), with u and v two distinct vertices of D, as the set of all vertices w such that u, v, w belong to a shortest directed path in D containing a shortest directed path from u to v. A line is empty if there is no directed path from u to v. Another option is that a line is the set of all vertices. The version of the Chen and Chv´atal’s conjecture we study states that if none of previous options hold, then the number of distinct lines in D is at least its number of vertices. Our main result is that any tournament satisfies this conjecture as well as any orientation of a complete bipartite graph of diameter three.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherElsevieres_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceEuropean Journal of Combinatoricses_ES
Keywordsdc.subjectErdos theoremes_ES
Keywordsdc.subjectBruijnes_ES
Títulodc.titleChen and Chvatal's conjecture in tournamentses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión sometida a revisión - Preprintes_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States