Asymmetric free spaces and canonical asymmetrizations
Artículo
Open/ Download
Access note
Acceso abierto
Publication date
2021
Abstract
A construction analogous to that of Godefroy-Kalton for metric spaces allows one to embed isometrically, in a canonical way, every quasi-metric space (X, d) in an asymmetric normed space F-a (X, d) (its quasi-metric free space, also called asymmetric free space or semi-Lipschitz free space). The quasi-metric free space satisfies a universal property (linearization of semi-Lipschitz functions). The (conic) dual of F-a (X, d) coincides with the non-linear asymmetric dual of (X, d), that is, the space SLip(0)(X, d) of semiLipschitz functions on (X, d), vanishing at a base point. In particular, for the case of a metric space (X, D), the above construction yields its usual free space. On the other hand, every metric space (X, D) naturally inherits a canonical asymmetrization coming from its free space F(X). This gives rise to a quasi-metric space (X, D+) and an asymmetric free space F-a (X, D+) . The symmetrization of the latter is isomorphic to the original free space F(X). The results of this work are illustrated with explicit examples.
Patrocinador
MCIU/AEI/ERDF, UE PGC2018-097960-B-C22
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT 1211217
1171854
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) C18E04
PFCHA 2019-21191167
Indexation
Artículo de publícación WoS
Quote Item
Studia Mathematica Volume 261 Issue 1 Page 55-102 Published 2021
Collections
The following license files are associated with this item: