Show simple item record

Authordc.contributor.authorIbarra, Emiro J.
Authordc.contributor.authorParra, Jesús A.
Authordc.contributor.authorAlzamendi, Gabriel A.
Authordc.contributor.authorCortés, Juan P.
Authordc.contributor.authorEspinoza Catalán, Víctor Manuel
Authordc.contributor.authorMehta, Daryush D.
Authordc.contributor.authorHillman, Robert E.
Authordc.contributor.authorZañartu, Matías
Admission datedc.date.accessioned2021-12-21T19:42:56Z
Available datedc.date.available2021-12-21T19:42:56Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationFrontiers in Physiology Volume 12 Article Number 732244 Published Sep 1 2021es_ES
Identifierdc.identifier.other10.3389/fphys.2021.732244
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/183325
Abstractdc.description.abstractThe ambulatory assessment of vocal function can be significantly enhanced by having access to physiologically based features that describe underlying pathophysiological mechanisms in individuals with voice disorders. This type of enhancement can improve methods for the prevention, diagnosis, and treatment of behaviorally based voice disorders. Unfortunately, the direct measurement of important vocal features such as subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is impractical in laboratory and ambulatory settings. In this study, we introduce a method to estimate these features during phonation from a neck-surface vibration signal through a framework that integrates a physiologically relevant model of voice production and machine learning tools. The signal from a neck-surface accelerometer is first processed using subglottal impedance-based inverse filtering to yield an estimate of the unsteady glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck surface accelerometer and an optional microphone signal. A neural network architecture is selected to provide a mapping between the seven input features and subglottal pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations of a voice production model that utilizes a symmetric triangular body-cover model of the vocal folds. The performance of the method was compared against laboratory data from synchronous recordings of oral airflow, intraoral pressure, microphone, and neck-surface vibration in 79 vocally healthy female participants uttering consecutive /p AE/ syllable strings at comfortable, loud, and soft levels. The mean absolute error and root-mean-square error for estimating the mean subglottal pressure were 191 Pa (1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with previous studies but with the key advantage of not requiring subject-specific training and yielding more output measures. The validation of vocal fold collision pressure and laryngeal muscle activation was performed with synthetic values as reference. These initial results provide valuable insight for further vocal fold model refinement and constitute a proof of concept that the proposed machine learning method is a feasible option for providing physiologically relevant measures for laboratory and ambulatory assessment of vocal function.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherFrontiers Mediaes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceFrontiers in Physiologyes_ES
Keywordsdc.subjectAmbulatory monitoringes_ES
Keywordsdc.subjectNeck-surface accelerometeres_ES
Keywordsdc.subjectSubglottal pressure estimationes_ES
Keywordsdc.subjectVoice production modeles_ES
Keywordsdc.subjectNeural networkses_ES
Keywordsdc.subjectClinical voice assessmentes_ES
Títulodc.titleEstimation of subglottal pressure, vocal fold collision pressure, and intrinsic laryngeal muscle activation from neck-surface vibration using a neural network framework and a voice production modeles_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States