Quantitative large population approximations for stochastic models with interaction or varying environment
Tesis
![Thumbnail](/themes/Mirage2/images/cubierta.jpg)
Access note
Acceso abierto
Publication date
2021Metadata
Show full item record
Cómo citar
Fontbona Torres, Joaquín
Cómo citar
Quantitative large population approximations for stochastic models with interaction or varying environment
Author
Professor Advisor
Abstract
Esta tesis se concentra en el estudio de modelos estocásticos de poblaciones compuestas de individuos interactuando entre ellos o con su medio.
En una primera parte consideramos sistemas de difusión cruzada para dos especies. Desarrollamos un enfoque de dualidad que permite obtener estimaciones cuantitativas de estabilidad. También introducimos un modelo estocástico basado en individuos sobre un espacio discreto. Los individuos siguen marchas aleatorias y son sensibles al número de individuos de la otra especie en el mismo sitio, con una dependencia lineal en sus tasas de movimiento. Establecimos la convergencia en ley del modelo estocástico hacia los sistemas de difusión cruzada cuando el número de individuos por sitio es más grande que el cuadrado del número de sitios, suponiendo condiciones iniciales pequeñas.
En una segunda parte obtenemos una tasa de convergencia explícita para ciertos sistemas de difusiones con interacción de tipo campo medio con ramificación binaria logística hacia las soluciones de sistemas de auto-difusión no local con crecimiento de masa logístico, que describen sus aproximaciones de grandes poblaciones. La demostración se apoya en un argumento de acoplamiento para difusiones con ramificación binaria basado en transporte óptimo, el cual nos permite aproximar la trayectoria de la población ramificante e interactuante por un sistema de partículas independientes con nacimientos espacio-temporales aleatorios y convenientemente distribuidos.
Finalmente, en una tercera parte, consideramos el árbol reducido asociado a procesos de nacimiento y muerte en medios variables que da la estructura genealógica de la población. Describimos geométricamente este objeto utilizando la construcción lookdown introducida por Kurtz y Rodrigues. Introduciendo un acoplamiento y una distancia adaptados, aproximamos la genealogía en grandes poblaciones.
xmlui.dri2xhtml.METS-1.0.item-notadetesis.item
Tesis para optar al grado de Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática en cotutela con el Institut Polytechnique de Paris
Patrocinador
CONICYT-PFCHA/Doctorado Nacional/2017-21171912 Este trabajo ha sido parcialmente financiado por CMM ANID PIA AFB170001, CMM ANID BASAL ACE210010 y CMM ANID BASAL FB210005
Identifier
URI: https://repositorio.uchile.cl/handle/2250/184082
Collections
The following license files are associated with this item: