Show simple item record

Professor Advisordc.contributor.advisorSilva Sánchez, Jorge Felipe
Professor Advisordc.contributor.advisorMéndez Bussard, René Alejandro
Authordc.contributor.authorVidela Araya, Miguel Ignacio
Associate professordc.contributor.otherOrchard Concha, Marcos Eduardo
Associate professordc.contributor.otherChauvin, Gaël
Admission datedc.date.accessioned2022-03-08T19:11:24Z
Available datedc.date.available2022-03-08T19:11:24Z
Publication datedc.date.issued2021
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/184107
Abstractdc.description.abstractA methodology for Bayesian inference in binary stellar systems based on the No-U-Turn sampler Markov chain Monte Carlo algorithm is presented, providing a precise and efficient estimation of the joint posterior distribution of the orbital parameters. The Bayesian methodology allows to directly incorporate prior information about the system to constrain the solution and estimate orbital parameters that cannot be determined due to lack of observations or imprecise measurements. The incorporation of prior information of the parallax and the primary object mass is extensively studied to determine the individual masses of the components of single-lined visual-spectroscopic binary systems. This study is made by analyzing the posterior distributions and their respective projection in the observation spaces. The methodology is extended for the Bayesian inference in hierarchical stellar systems of any multiplicity, architecture, and lack of observation sources. Finally, a methodology to determine the optimal measurements time in binary and hierarchical systems is proposed based on the maximum entropy sampling criterion. This methodology makes direct use of the estimated posterior distribution to provide a temporal characterization of the information gain of new observations of the system and estimates a probability distribution of the optimal measurement time.es_ES
Patrocinadordc.description.sponsorshipFONDECYT 1170854, FONDECYT 1210315 y Proyecto Basal AC3E FB0008es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Keywordsdc.subjectTeoría bayesiana de decisiones estadísticas
Keywordsdc.subjectModelos matemáticos
Keywordsdc.subjectSistemas estelares binarios
Keywordsdc.subjectInferencia bayesiana
Keywordsdc.subjectEstrellas binarias de una sola línea
Keywordsdc.subjectHierarchical systems
Títulodc.titleBayesian inference in hierarchical Stellar systemses_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoDepartamento de Ingeniería Eléctricaes_ES
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.titulacionuchile.titulacionDoble Titulaciónes_ES
uchile.carrerauchile.carreraIngeniería Civil Eléctricaes_ES
uchile.gradoacademicouchile.gradoacademicoMagisteres_ES
uchile.notadetesisuchile.notadetesisTesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Eléctricaes_ES
uchile.notadetesisuchile.notadetesisMemoria para optar al título de Ingeniero Civil Eléctrico


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States