Euclid preparation XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography
Artículo
Open/ Download
Access note
Acceso abierto
Publication date
2021Metadata
Show full item record
Cómo citar
Ilbert, O.
Cómo citar
Euclid preparation XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography
Author
- Ilbert, O.;
- Torre, S. de la;
- Martinet, N.;
- Wright, A. H.;
- Paltani, S.;
- Laigle, C.;
- Davidzon, I.;
- Jullo, E.;
- Hildebrandt, H.;
- Masters, D. C.;
- Amara, A.;
- Conselice, C. J.;
- Andreon, S.;
- Auricchio, N.;
- Azzollini, R.;
- Baccigalupi, C.;
- Balaguera Antolínez, A.;
- Baldi, M.;
- Balestra, A.;
- Bardelli, S.;
- Bender, R.;
- Biviano, A.;
- Bodendorf, C.;
- Bonino, D.;
- Borgani, S.;
- Boucaud, A.;
- Bozzo, E.;
- Branchini, E.;
- Brescia, M.;
- Burigana, C.;
- Cabanac, R.;
- Camera, S.;
- Capobianco, V.;
- Cappi, A.;
- Carbone, C.;
- Carretero, J.;
- Carvalho, C.S.;
- Casas, S.;
- Castander, F. J.;
- Castellano, M.;
- Castignani, G.;
- Cavuoti, S.;
- Cimatti, A.;
- Cledassou, R.;
- Colodro Conde, C.;
- Congedo, G.;
- Conversi, L.;
- Copin, Y.;
- Corcione, L.;
- Costille, A.;
- Coupon, J.;
- Courtois, H. M.;
- Cropper, M.;
- Cuby, J.;
- Da Silva, A.;
- Degaudenzi, H.;
- Di Ferdinando, D.;
- Dubath, F.;
- Duncan, C.;
- Dupac, X.;
- Dusini, S.;
- Ealet, A.;
- Fabricius, M.;
- Farrens, S.;
- Ferreira, P.G.;
- Finelli, F.;
- Fosalba, P.;
- Fotopoulou, S.;
- Franceschi, E.;
- Franzetti, P.;
- Galeotta, S.;
- Garilli, B.;
- Gillard, W.;
- Gillis, B.;
- Giocoli, C.;
- Gozaliasl, G.;
- Graciá Carpio, J.;
- Grupp, F.;
- Guzzo, L.;
- Haugan, S. V. H.;
- Holmes, W.;
- Hormuth, F.;
- Jahnke, K.;
- Keihanen, E.;
- Kermiche, S.;
- Kiessling, A.;
- Kirkpatrick, C. C.;
- Kunz, M.;
- Kurki Suonio, H.;
- Ligori, S.;
- Lilje, P.B.;
- Lloro, I.;
- Maino, D.;
- Maiorano, E.;
- Marggraf, O.;
- Markovic, K.;
- Marulli, F.;
- Massey, R.;
- Maturi, M.;
- Mauri, N.;
- Maurogordato, S.;
- McCracken, H.J.;
- Medinaceli, E.;
- Mei, S.;
- Benton Metcalf, R.;
- Moresco, M.;
- Morin, B.;
- Moscardini, L.;
- Munari, E.;
- Nakajima, R.;
- Neissner, C.;
- Niemi, S.;
- Nightingale, J.;
- Padilla, C.;
- Pasian, F.;
- Patrizii, L.;
- Pedersen, K.;
- Pello, R.;
- Pettorino, V.;
- Pires, S.;
- Polenta, G.;
- Poncet, M.;
- Popa, L.;
- Potter, D.;
- Pozzetti, L.;
- Raison, F.;
- Renzi, A.;
- Rhodes, J.;
- Riccio, G.;
- Romelli, E.;
- Roncarelli, M.;
- Rossetti, E.;
- Saglia, R.;
- Sánchez, A. G.;
- Sapone, Domenico;
- Schneider, P.;
- Schrabback, T.;
- Scottez, V.;
- Secroun, A.;
- Seidel, G.;
- Serrano, S.;
- Sirignano, C.;
- Sirri, G.;
- Stanco, L.;
- Sureau, F.;
- Tallada Crespá, P.;
- Tenti, M.;
- Teplitz, H.I.;
- Tereno, I.;
- Toledo Moreo, R.;
- Torradeflot, F.;
- Tramacere, A.;
- Valentijn, E. A.;
- Valenziano, L.;
- Valiviita, J.;
- Vassallo, T.;
- Wang, Y.;
- Welikala, N.;
- Weller, J.;
- Whittaker, L.;
- Zacchei, A.;
- Zamorani, G.;
- Zoubian, J.;
- Zucca, E.;
Abstract
The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our
capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift hzi. We investigate the
possibility of measuring hzi with an accuracy better than 0:002 (1 + z) in ten tomographic bins spanning the redshift interval 0:2 < z < 2:2, the
requirements for the cosmic shear analysis of Euclid. We implement a su ciently realistic simulation in order to understand the advantages and
complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of hzi with a dedicated spectroscopic sample and
the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-
AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure
produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is
su ciently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an
extremely high level of >99:8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This
approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing
method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).
Patrocinador
CNES fellowship
German Research Foundation (DFG) Hi 1495/5-1
European Research Council (ERC) 770935
SKA South Africa 896225
Centre National D'etudes Spatiales
ESO Telescopes at the La Silla Paranal Observatory under programme 177.A-3016
177.A-3017
177.A-3018
179.A2004
German Research Foundation (DFG)
NOVA
University of Padova
University Federico II (Naples)
PRIN MIUR2015 "Cosmology and Fundamental Physics: Illuminating the Dark Universe with Euclid"
European Space Agency
European Commission
Agenzia Spaziale Italiana (ASI)
Belgian Federal Science Policy Office
Canadian Euclid Consortium
Centre National D'etudes Spatiales
Danish Space Research Institute
Portuguese Foundation for Science and Technology
European Commission
Aparece en contenido como:Fundacao para a Ciencia e a Tecnologia
Spanish Government
National Aeronautics & Space Administration (NASA)
Netherlandse Onderzoekschool Voor Astronomie
Norwegian Space Agency
Romanian Space Agency
State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO)
United Kingdom Space Agency
European Research Council (ERC)
European Commission
NWO-M grants
Target
Academy of Finland
Helmholtz Association
German Aerospace Centre (DLR)
Indexation
Artículo de publícación WoS Artículo de publicación SCOPUS
Quote Item
A&A 647, A117 (2021)
Collections
The following license files are associated with this item: