On the geometry of the action of finite linked groups: Isogenous Jacobian varieties via intermediate covering.
Professor Advisor
dc.contributor.advisor
Rojas Rodriguez, Anita Maria
Author
dc.contributor.author
Bravo Rubio, Estefanía Nicole
Admission date
dc.date.accessioned
2022-04-25T15:43:57Z
Available date
dc.date.available
2022-04-25T15:43:57Z
Publication date
dc.date.issued
2022
Identifier
dc.identifier.other
10.58011/nzrj-xj58
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/185075
Abstract
dc.description.abstract
Let G be a nite group acting on a compact Riemann surface X. This action
induces the so called group algebra decomposition of the corresponding
Jacobian variety JX. Moreover, consider a subgroup H G of G and the
intermediate quotient X=H arising from this action restricted to H. The
group algebra decomposition of JX determines a decomposition of the Jacobian
variety J(X=H) of X=H.
In this work, we prove a condition under which two intermediate quotients,
X=H and X=K for H;K G, correspond to isogenous Jacobian
varieties. The condition is that they induce the same permutation character,
a concept that has been widely studied in the context of Representation
Theory, where it is said that H and K are linked subgroups in G.
For every (odd) prime p 3, we study a family of groups Gp
=
(Z=p2Z
Z=pZ) o (Z=pZ Z=pZ) having two linked subgroups which are not conjugate.
We describe their elements, irreducible complex (and rational) representations,
di erent signatures for their actions on Riemann surfaces, and the
corresponding impact on the group algebra decomposition of the associated
Jacobian varieties.
es_ES
Abstract
dc.description.abstract
Sea G un grupo nito actuando en una super cie de Riemann compacta X.
Esta acci on induce la llamada descomposici on seg un el algebra de grupo de
la variedad Jacobiana JX correspondiente a X. M as a un, considere H
G subgrupo de G y la super cie cuociente (intermedia) X=H determinada
por la acci on restringida a H. La descomposici on de JX determina una
descomposici on de la Jacobiana de X=H, J(X=H).
En este trabajo demostramos una condici on bajo la cual las variedades
Jacobianas de dos cubrientes intermedios, X=H y X=K para H;K G, son
is ogenas. Esta condici on es que H y K inducen la misma representaci on
permutacional. Ello ha sido ampliamente estudiado en el contexto de Teor a
de Representaciones, donde se dice que H y K son subgroups ligados en G.
Para todo primo (impar) p 3, estudiamos una familia de grupos Gp
=
(Z=p2Z Z=pZ)o (Z=pZ Z=pZ) que tienen dos subgrupos ligados no conjugados.
Describimos sus elementos, caracteres irreducibles complejos (y
racionales), diferentes rmas y acciones, y las consecuencias en la descomposici
on de las variedades Jacobianas asociadas.
es_ES
Patrocinador
dc.description.sponsorship
Agencia de Investigación ANID y Beca de Doctorado Nacional con folio 2017-21171358.
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Universidad de Chile
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States