Molecules with ALMA at Planet-forming Scales (MAPS). VI. Distribution of the small organics HCN, C2H, and H2CO
Artículo
Open/ Download
Access note
Acceso abierto
Publication date
2021Metadata
Show full item record
Cómo citar
Guzmán, Viviana V.
Cómo citar
Molecules with ALMA at Planet-forming Scales (MAPS). VI. Distribution of the small organics HCN, C2H, and H2CO
Author
- Guzmán, Viviana V.;
- Bergner, Jennifer B.;
- Law, Charles J.;
- Oberg, Karin I.;
- Walsh, Catherine;
- Cataldi, Gianni;
- Aikawa, Yuri;
- Bergin, Edwin A.;
- Czekala, Ian;
- Huang, Jane;
- Andrews, Sean M.;
- Loomis, Ryan A.;
- Zhang, Ke;
- Le Gal, Romane;
- Alarcón, Felipe;
- Ilee, John D.;
- Teague, Richard;
- Cleeves, L. Ilsedore;
- Wilner, David J.;
- Long, Feng;
- Schwarz, Kamber R.;
- Bosman, Arthur D.;
- Pérez Muñoz, Laura;
- Menard, Francois;
- Liu, Yao;
Abstract
Small organic molecules, such as C2H, HCN, and H2CO, are tracers of the C, N, and O budget in protoplanetary
disks. We present high-angular-resolution (10–50 au) observations of C2H, HCN, and H2CO lines in five
protoplanetary disks from the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program.
We derive column density and excitation temperature profiles for HCN and C2H, and find that the HCN emission
arises in a temperate (20–30 K) layer in the disk, while C2H is present in relatively warmer (20–60 K) layers. In the
case of HD 163296, we find a decrease in column density for HCN and C2H inside one of the dust gaps near
∼83 au, where a planet has been proposed to be located. We derive H2CO column density profiles assuming
temperatures between 20 and 50 K, and find slightly higher column densities in the colder disks around T Tauri
stars than around Herbig Ae stars. The H2CO column densities rise near the location of the CO snowline and/or
millimeter dust edge, suggesting an efficient release of H2CO ices in the outer disk. Finally, we find that the inner
50 au of these disks are rich in organic species, with abundances relative to water that are similar to cometary
values. Comets could therefore deliver water and key organics to future planets in these disks, similar to what
might have happened here on Earth. This paper is part of the MAPS special issue of the Astrophysical Journal
Supplement.
Patrocinador
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT 11180904
ANID AFB-170002
Space Telescope Science Institute
National Aeronautics & Space Administration (NASA) HST-HF2-51429.001-A
HST-HF2-51405.001-A
HST-HF2-51460.001-A
HST-HF2-51419.001
National Aeronautics & Space Administration (NASA) NAS5-26555
HST-HF2-51401.001
NAOJ ALMA Scientific Research grant 2019-13B
National Science Foundation (NSF) DGE1745303
Simons Foundation 321183
National Science Foundation (NSF)
NSF - Directorate for Mathematical & Physical Sciences (MPS) 1907653
University of Leeds
UK Research & Innovation (UKRI)
Science & Technology Facilities Council (STFC)
UK Research & Innovation (UKRI) ST/R000549/1
ST/T000287/1
MR/T040726/1
NAOJ ALMA Scientific Research 2019-13B
National Aeronautics & Space Administration (NASA) 17-XRP17 2-0012
Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison
Wisconsin Alumni Research Foundation
Space Telescope Science Institute
Centre National D'etudes Spatiales
UK Research & Innovation (UKRI)
Science & Technology Facilities Council (STFC) ST/T000287/1
Smithsonian Institution
The David & Lucile Packard Foundation
Johnson & Johnson's WiSTEM2D Program
ANID FONDECYT 11181068
French National Research Agency (ANR) ANR-16-CE31-0013
ANR-15-IDEX-02
National Natural Science Foundation of China (NSFC) 11973090
18H05222
20H05847
Indexation
Artículo de publícación WoS
Quote Item
The Astrophysical Journal Supplement Series, 257:6 (18pp), 2021 November
Collections
The following license files are associated with this item: