Show simple item record

Authordc.contributor.authorUrra Faúndez, Félix Ariel
Authordc.contributor.authorFuentes Retamal, Sebastián Andrés
Authordc.contributor.authorPalominos, Charlotte
Authordc.contributor.authorRodríguez Lucart, Yarcely A.
Authordc.contributor.authorLópez Torres, Camila Alejandra
Authordc.contributor.authorAraya Maturana, Ramiro Juan
Admission datedc.date.accessioned2022-06-14T16:39:41Z
Available datedc.date.available2022-06-14T16:39:41Z
Publication datedc.date.issued2021
Cita de ítemdc.identifier.citationFrontiers in Cell and Developmental Biology (2021) Volume 9 Article 751301es_ES
Identifierdc.identifier.other10.3389/fcell.2021.751301
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/186033
Abstractdc.description.abstractThe role of metabolism in tumor growth and chemoresistance has received considerable attention, however, the contribution of mitochondrial bioenergetics in migration, invasion, and metastasis is recently being understood. Migrating cancer cells adapt their energy needs to fluctuating changes in the microenvironment, exhibiting high metabolic plasticity. This occurs due to dynamic changes in the contributions of metabolic pathways to promote localized ATP production in lamellipodia and control signaling mediated by mitochondrial reactive oxygen species. Recent evidence has shown that metabolic shifts toward a mitochondrial metabolism based on the reductive carboxylation, glutaminolysis, and phosphocreatine-creatine kinase pathways promote resistance to anoikis, migration, and invasion in cancer cells. The PGC1a-driven metabolic adaptations with increased electron transport chain activity and superoxide levels are essential for metastasis in several cancer models. Notably, these metabolic changes can be determined by the composition and density of the extracellular matrix (ECM). ECM stiffness, integrins, and small Rho GTPases promote mitochondrial fragmentation, mitochondrial localization in focal adhesion complexes, and metabolic plasticity, supporting enhanced migration and metastasis. Here, we discuss the role of ECM in regulating mitochondrial metabolism during migration and metastasis, highlighting the therapeutic potential of compounds affecting mitochondrial function and selectively block cancer cell migration.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1180069 11201322 VID-University of Chile UI-024/20 22191223 3210667es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherFrontiers Media SAes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceFrontiers in Cell and Developmental Biologyes_ES
Keywordsdc.subjectOXPHOS (oxidative phosphorylation)es_ES
Keywordsdc.subjectIntegrines_ES
Keywordsdc.subjectTCA cyclees_ES
Keywordsdc.subjectECM stiffnesses_ES
Keywordsdc.subjectMigrastaticses_ES
Keywordsdc.subjectMigrating cancer cellses_ES
Keywordsdc.subjectMetabolic shiftes_ES
Títulodc.titleExtracellular matrix signals as drivers of mitochondrial bioenergetics and metabolic plasticity of cancer cells during metastasises_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES
Indexationuchile.indexArtículo de publicación SCOPUSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States