Show simple item record

Authordc.contributor.authorViscaino, Michelle
Authordc.contributor.authorTalamilla, Matías
Authordc.contributor.authorMaass Oñate, Juan Cristobal
Authordc.contributor.authorHenríquez, Pablo
Authordc.contributor.authorDélano Reyes, Paul
Authordc.contributor.authorAuat Cheein, Cecilia
Authordc.contributor.authorAuat Cheein, Fernando
Admission datedc.date.accessioned2022-06-29T21:21:36Z
Available datedc.date.available2022-06-29T21:21:36Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationDiagnostics 2022, 12, 917es_ES
Identifierdc.identifier.other10.3390/diagnostics12040917
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/186348
Abstractdc.description.abstractArtificial intelligence-assisted otologic diagnosis has been of growing interest in the scientific community, where middle and external ear disorders are the most frequent diseases in daily ENT practice. There are some efforts focused on reducing medical errors and enhancing physician capabilities using conventional artificial vision systems. However, approaches with multispectral analysis have not yet been addressed. Tissues of the tympanic membrane possess optical properties that define their characteristics in specific light spectra. This work explores color wavelengths dependence in a model that classifies four middle and external ear conditions: normal, chronic otitis media, otitis media with effusion, and earwax plug. The model is constructed under a computer-aided diagnosis system that uses a convolutional neural network architecture. We trained several models using different single-channel images by taking each color wavelength separately. The results showed that a single green channel model achieves the best overall performance in terms of accuracy (92%), sensitivity (85%), specificity (95%), precision (86%), and F1-score (85%). Our findings can be a suitable alternative for artificial intelligence diagnosis systems compared to the 50% of overall misdiagnosis of a non-specialist physician.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) FB0008 CONICYT-PCHA/Doctorado Nacional 2018-21181420 UTFSM Chile DGIIP-PIIC-28/2021es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherMDPIes_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceDiagnosticses_ES
Keywordsdc.subjectOtologyes_ES
Keywordsdc.subjectArtificial intelligencees_ES
Keywordsdc.subjectMiddle and external eares_ES
Keywordsdc.subjectDeep learninges_ES
Keywordsdc.subjectConvolutional neural networkes_ES
Títulodc.titleColor dependence analysis in a CNN-based computer-aided diagnosis system for middle and external ear diseaseses_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States