Euclid: Forecast constraints on consistency tests of the Lambda CDM model
Artículo
Open/ Download
Access note
Acceso abierto
Publication date
2022Metadata
Show full item record
Cómo citar
Nesseris, S.
Cómo citar
Euclid: Forecast constraints on consistency tests of the Lambda CDM model
Author
- Nesseris, S.;
- Sapone, Domenico;
- Martinelli, M.;
- Camarena, D.;
- Marra, V.;
- Sakr, Z.;
- García Bellido, J.;
- Martins, C. J. A. P.;
- Clarkson, C.;
- Da Silva, A.;
- Fleury, P.;
- Lombriser, L.;
- Mimoso, J. P.;
- Casas, S.;
- Pettorino, V.;
- Tutusaus, I.;
- Amara, A.;
- Auricchio, N.;
- Bodendorf, C.;
- Bonino, D.;
- Branchini, E.;
- Brescia, M.;
- Capobianco, V.;
- Carbone, C.;
- Carretero, J.;
- Castellano, M.;
- Cavuoti, S.;
- Cimatti, A.;
- Cledassou, R.;
- Congedo, G.;
- Conversi, L.;
- Copin, Y.;
- Corcione, L.;
- Courbin, F.;
- Cropper, M.;
- Degaudenzi, H.;
- Douspis, M.;
- Dubath, F.;
- Duncan, C. A. J.;
- Dupac, X.;
- Dusini, S.;
- Ealet, A.;
- Farrens, S.;
- Fosalba, P.;
- Frailis, M.;
- Franceschi, E.;
- Fumana, M.;
- Garilli, B.;
- Gillis, B.;
- Giocoli, C.;
- Grazian, A.;
- Grupp, F.;
- Haugan, S. V. H.;
- Holmes, W.;
- Hormuth, F.;
- Jahnke, K.;
- Kermiche, S.;
- Kiessling, A.;
- Kitching, T.;
- Kummel, M.;
- Kunz, M.;
- Kurki Suonio, H.;
- Ligori, S.;
- Lilje, P. B.;
- Lloro, I.;
- Mansutti, O.;
- Marggraf, O.;
- Markovic, K.;
- Marulli, F.;
- Massey, R.;
- Meneghetti, M.;
- Merlin, E.;
- Meylan, G.;
- Moresco, M.;
- Moscardini, L.;
- Munari, E.;
- Niemi, S. M.;
- Padilla, C.;
- Paltani, S.;
- Pasian, F.;
- Pedersen, K.;
- Percival, W. J.;
- Poncet, M.;
- Popa, L.;
- Racca, G. D.;
- Raison, F.;
- Rhodes, J.;
- Roncarelli, M.;
- Saglia, R.;
- Sartoris, B.;
- Schneider, P.;
- Secroun, A.;
- Seidel, G.;
- Serrano, S.;
- Sirignano, C.;
- Sirri, G.;
- Stanco, L.;
- Starck, J. L.;
- Tallada Crespi, P.;
- Taylor, A. N.;
- Tereno, I.;
- Toledo Moreo, R.;
- Torradeflot, F.;
- Valentijn, E. A.;
- Valenziano, L.;
- Wang, Y.;
- Welikala, N.;
- Zamorani, G.;
- Zoubian, J.;
- Andreon, S.;
- Baldi, M.;
- Camera, S.;
- Medinaceli, E.;
- Mei, S.;
- Renzi, A.;
Abstract
Context. The standard cosmological model is based on the fundamental assumptions of a spatially homogeneous and isotropic universe on large
scales. An observational detection of a violation of these assumptions at any redshift would immediately indicate the presence of new physics.
Aims. We quantify the ability of the Euclid mission, together with contemporary surveys, to improve the current sensitivity of null tests of the
canonical cosmological constant Λ and the cold dark matter (ΛCDM) model in the redshift range 0 < z < 1.8.
Methods. We considered both currently available data and simulated Euclid and external data products based on a ΛCDM fiducial model, an
evolving dark energy model assuming the Chevallier-Polarski-Linder parameterization or an inhomogeneous Lemaître-Tolman-Bondi model with
a cosmological constant Λ, and carried out two separate but complementary analyses: a machine learning reconstruction of the null tests based on
genetic algorithms, and a theory-agnostic parametric approach based on Taylor expansion and binning of the data, in order to avoid assumptions
about any particular model.
Results. We find that in combination with external probes, Euclid can improve current constraints on null tests of the ΛCDM by approximately a
factor of three when using the machine learning approach and by a further factor of two in the case of the parametric approach. However, we also
find that in certain cases, the parametric approach may be biased against or missing some features of models far from ΛCDM.
Conclusions. Our analysis highlights the importance of synergies between Euclid and other surveys. These synergies are crucial for providing
tighter constraints over an extended redshift range for a plethora of different consistency tests of some of the main assumptions of the current
cosmological paradigm.
Patrocinador
Centro de Excelencia Severo Ochoa Program SEV-2016-059
Spanish Government RYC-2014-15843
La Caixa Foundation 100010434
LCF/BQ/PI19/11690015
LCF/BQ/PI19/11690018.
Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)
CONICYT FONDECYT 1200171
FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI)
Portuguese Foundation for Science and Technology POCI-01-0145-FEDER-028987
Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPQ)
Fundacao de Amparo a Pesquisa do Estado de Espiritu Santo (FAPES)
Swiss National Science Foundation (SNSF) 170547
European Commission 888258
UK Research & Innovation (UKRI)
Science & Technology Facilities Council (STFC) ST/P000592/1
Portuguese Foundation for Science and Technology
European Commission IF/01135/2015
EXPL/FIS-AST/1368/2021
PTDC/FIS-AST/0054/2021
UIDB/04434/2020
UIDP/04434/2020
CERN/FIS-PAR/0037/2019
PTDC/FIS-OUT/29048/2017
IRAP computing center
IN2P3 Lyon computing center
Spanish Government ESP2017-89838
H2020 programme of the European Commission 776247
POCH/FSE (EC)
European Space Agency
European Commission
Academy of Finland
Agenzia Spaziale Italiana (ASI)
Belgian Federal Science Policy Office
Canadian Euclid Consortium
Centre National D'etudes Spatiales
Helmholtz Association
German Aerospace Centre (DLR)
Danish Space Research Institute
Portuguese Foundation for Science and Technology
European Commission
Spanish Government
National Aeronautics & Space Administration (NASA)
Netherlandse Onderzoekschool Voor Astronomie
Norwegian Space Agency
Romanian Space Agency
State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO)
United Kingdom Space Agency
PGC2018-094773-B-C32
Indexation
Artículo de publícación WoS
Quote Item
A&A 660, A67 (2022)
Collections
The following license files are associated with this item: