Show simple item record

Authordc.contributor.authorGonzález, Mauricio E.
Authordc.contributor.authorSilva Sánchez, Jorge
Authordc.contributor.authorVidela, Miguel
Authordc.contributor.authorOrchard Concha, Marcos Eduardo
Admission datedc.date.accessioned2022-09-06T22:32:11Z
Available datedc.date.available2022-09-06T22:32:11Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationIEEE Transactions on Signal Processing, Vol. 70, 2022es_ES
Identifierdc.identifier.other10.1109/TSP.2021.3135689
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/187873
Abstractdc.description.abstractThis work addresses testing the independence of two continuous and finite-dimensional random variables from the design of a data-driven partition. The empirical log-likelihood statistic is adopted to approximate the sufficient statistics of an oracle test against independence (that knows the two hypotheses). It is shown that approximating the sufficient statistics of the oracle test offers a learning criterion for designing a data-driven partition that connects with the problem of mutual information estimation. Applying these ideas in the context of a data-dependent tree-structured partition (TSP), we derive conditions on the TSP’s parameters to achieve a strongly consistent distribution-free test of independence over the family of probabilities equipped with a density. Complementing this result, we present finite-length results that show our TSP scheme’s capacity to detect the scenario of independence structurally with the data-driven partition as well as new sampling complexity bounds for this detection. Finally, some experimental analyses provide evidence regarding our scheme’s advantage for testing independence compared with some strategies that do not use data-driven representations.es_ES
Patrocinadordc.description.sponsorshipComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDECYT 1210315 ANID-PFCHA/MagsterNacional 2019-22191445 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT PIA/BASAL FB0008es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherIEEE-Inst Electrical Electronics Engineerses_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceIEEE Transactions on Signal Processinges_ES
Keywordsdc.subjectIndependence testinges_ES
Keywordsdc.subjectNon-parametric learninges_ES
Keywordsdc.subjectLearning representationses_ES
Keywordsdc.subjectData-driven partitionses_ES
Keywordsdc.subjectTree-structure partitionses_ES
Keywordsdc.subjectMutual informationes_ES
Keywordsdc.subjectConsistencyes_ES
Keywordsdc.subjectFinite-length analysises_ES
Títulodc.titleData-driven representations for testing independence: modeling, analysis and connection with mutual information estimationes_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorcrbes_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States