Show simple item record

Professor Advisordc.contributor.advisorDunstan Escudero, Jocelyn
Professor Advisordc.contributor.advisorAbeliuk Kimelman, Andrés
Authordc.contributor.authorBarros Sanfuentes, José Miguel
Associate professordc.contributor.otherBustos Cárdenas, Benjamín
Associate professordc.contributor.otherParra Santander, Denis
Admission datedc.date.accessioned2023-05-30T15:35:34Z
Available datedc.date.available2023-05-30T15:35:34Z
Publication datedc.date.issued2023
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/193936
Abstractdc.description.abstractClinical coding is the task of transforming medical documents into structured codes following a standard ontology. Since these terminologies are composed of thousands of codes, this problem can be considered an Extreme Multi-label Classification task. This thesis proposes a novel neural network-based architecture for clinical coding. First, we take full advantage of the hierarchical nature of ontologies to create clusters based on semantic relations. Then, we use a Matcher module to assign the probability of documents belonging to each cluster. Finally, the Ranker calculates the probability of each code considering only the documents within the cluster. This division allows a fine-grained differentiation within the cluster, which cannot be addressed using a single classifier. In addition, since most of the previous work has focused on solving this task in English, we conducted our experiments on four clinical coding corpora in Spanish. The experimental results demonstrate the effectiveness of our model, achieving state-of-the-art results on three of the four datasets. Specifically, we outperformed previous models on two subtasks of the CodiEsp shared task: CodiEsp-D and CodiEsp-P. Also we obtained state-of-the-art results in the FALP corpus.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Títulodc.titleDivide and conquer: An extreme multi-label classification approach for coding diseases and procedures in spanishes_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorgmmes_ES
Departmentuchile.departamentoEscuela de Postgrado y Educación Continuaes_ES
Departmentuchile.departamentoDepartamento de Ciencias de la Computación
Facultyuchile.facultadFacultad de Ciencias Físicas y Matemáticases_ES
uchile.titulacionuchile.titulacionDoble Titulaciónes_ES
uchile.carrerauchile.carreraIngeniería Civil en Computaciónes_ES
uchile.gradoacademicouchile.gradoacademicoMagisteres_ES
uchile.notadetesisuchile.notadetesisTesis para optar al grado de Magíster en Ciencia de Datoses_ES
uchile.notadetesisuchile.notadetesisMemoria para optar al título de Ingeniero Civil en Computación


Files in this item

Icon
Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States