Show simple item record

Authordc.contributor.authorFigueroa Barra, Alicia Ivonne Eduvigis
Authordc.contributor.authorAguila, Daniel del
Authordc.contributor.authorCerda Villablanca, Mauricio David
Authordc.contributor.authorGaspar Ramos, Pablo Arturo
Authordc.contributor.authorTerissi, Lucas D.
Authordc.contributor.authorDurán, Manuel
Authordc.contributor.authorValderrama Vega, Camila Fernanda
Admission datedc.date.accessioned2023-07-23T21:13:05Z
Available datedc.date.available2023-07-23T21:13:05Z
Publication datedc.date.issued2022
Cita de ítemdc.identifier.citationSchizophrenia (2022) 53es_ES
Identifierdc.identifier.other10.1038/s41537-022-00259-3
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/194947
Abstractdc.description.abstractAutomated language analysis of speech has been shown to distinguish healthy control (HC) vs chronic schizophrenia (SZ) groups, yet the predictive power on first-episode psychosis patients (FEP) and the generalization to non-English speakers remain unclear. We performed a cross-sectional and longitudinal (18 months) automated language analysis in 133 Spanish-speaking subjects from three groups: healthy control or HC (n = 49), FEP (n = 40), and chronic SZ (n = 44). Interviews were manually transcribed, and the analysis included 30 language features (4 verbal fluency; 20 verbal productivity; 6 semantic coherence). Our cross-sectional analysis showed that using the top ten ranked and decorrelated language features, an automated HC vs SZ classification achieved 85.9% accuracy. In our longitudinal analysis, 28 FEP patients were diagnosed with SZ at the end of the study. Here, combining demographics, PANSS, and language information, the prediction accuracy reached 77.5% mainly driven by semantic coherence information. Overall, we showed that language features from Spanish-speaking clinical interviews can distinguish HC vs chronic SZ, and predict SZ diagnosis in FEP patients.es_ES
Patrocinadordc.description.sponsorshipMillennium Science Initiative Program P09- 015F NCS17_035 ACE210007 Agencia Nacional de Investigacion y Desarrollo Fondecyt program 11191122 1211988 1190806 1221696 Fondequip program EQM210020 Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) CONICYT FONDEF ID20I10371 PIA program ACT192015 Guillermo Puelma Foundationes_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherNaturees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceSchizophreniaes_ES
Keywordsdc.subjectCommunications disturbanceses_ES
Keywordsdc.subjectThought-disorderes_ES
Keywordsdc.subjectRiskes_ES
Keywordsdc.subjectAbnormalitieses_ES
Keywordsdc.subjectSymptomses_ES
Keywordsdc.subjectSpeeches_ES
Títulodc.titleAutomatic language analysis identifies and predicts schizophrenia in first-episode of psychosises_ES
Document typedc.typeArtículo de revistaes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorapces_ES
Indexationuchile.indexArtículo de publícación WoSes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States