Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
Author
dc.contributor.author
Van Lissa, Caspar J.
Author
dc.contributor.author
Stroebe, Wolfgang
Author
dc.contributor.author
VanDellen, Michelle R.
Author
dc.contributor.author
Leander, N. Pontus
Author
dc.contributor.author
Agostini, Maximilian
Author
dc.contributor.author
Draws, Tim
Author
dc.contributor.author
Grygoryshyn, Andrii
Author
dc.contributor.author
Gützgow, Ben
Author
dc.contributor.author
Kreienkamp, Jannis
Author
dc.contributor.author
Vetter, Clara S.
Author
dc.contributor.author
Abakoumkin, Georgios
Author
dc.contributor.author
Khaiyom, Jamilah Hanum Abdul
Author
dc.contributor.author
Ahmedi, Vjolica
Author
dc.contributor.author
Akkas, Handan
Author
dc.contributor.author
Almenara, Carlos A.
Author
dc.contributor.author
Atta, Mohsin
Author
dc.contributor.author
Bagci, Sabahat Cigdem
Author
dc.contributor.author
Basel, Sima
Author
dc.contributor.author
Kida, Edona Berisha
Author
dc.contributor.author
Bernardo, Allan B. I.
Author
dc.contributor.author
Buttrick, Nicholas R.
Author
dc.contributor.author
Chobthamkit, Phatthanakit
Author
dc.contributor.author
Choi, Hoon-Seok
Author
dc.contributor.author
Cristea, Mioara
Author
dc.contributor.author
Csaba, Sara
Author
dc.contributor.author
Damnjanovic, Kaja
Author
dc.contributor.author
Danyliuk, Ivan
Author
dc.contributor.author
Dash, Arobindu
Author
dc.contributor.author
Di Santo, Daniela
Author
dc.contributor.author
Douglas, Karen M.
Author
dc.contributor.author
Enea, Violeta
Author
dc.contributor.author
Faller, Daiane Gracieli
Author
dc.contributor.author
Fitzsimons, Gavan J.
Author
dc.contributor.author
Gheorghiu, Alexandra
Author
dc.contributor.author
Gómez, Ángel
Author
dc.contributor.author
Hamaidia, Ali
Author
dc.contributor.author
Han, Qing
Author
dc.contributor.author
Helmy, Mai
Author
dc.contributor.author
Hudiyana, Joevarian
Author
dc.contributor.author
Jeronimus, Bertus F.
Author
dc.contributor.author
Jiang, Ding-Yu
Author
dc.contributor.author
Jovanovic, Veljko
Author
dc.contributor.author
Kamenov, Zeljka
Author
dc.contributor.author
Kende, Anna
Author
dc.contributor.author
Keng, Shian-Ling
Author
dc.contributor.author
Kieu, Tra Thi Thanh
Author
dc.contributor.author
Koc, Yasin
Author
dc.contributor.author
Kovyazina, Kamila
Author
dc.contributor.author
Kozytska, Inna
Author
dc.contributor.author
Krause, Joshua
Author
dc.contributor.author
Kruglanksi, Arie W.
Author
dc.contributor.author
Kurapov, Anton
Author
dc.contributor.author
Kutlaca, Maja
Author
dc.contributor.author
Lantos, Nora Anna
Author
dc.contributor.author
Lemay, Edward P.
Author
dc.contributor.author
Lesmana, Cokorda Bagus Jaya
Author
dc.contributor.author
Louis, Winnifred R.
Author
dc.contributor.author
Lueders, Adrian
Author
dc.contributor.author
Malik, Najma Iqbal
Author
dc.contributor.author
Martínez, Anton P.
Author
dc.contributor.author
McCabe, Kira O.
Author
dc.contributor.author
Mehulic, Jasmina
Author
dc.contributor.author
Milla, Mirra Noor
Author
dc.contributor.author
Mohammed, Idris
Author
dc.contributor.author
Molinario, Erica
Author
dc.contributor.author
Moyano, Manuel
Author
dc.contributor.author
Muhammad, Hayat
Author
dc.contributor.author
Mula, Silvana
Author
dc.contributor.author
Muluk, Hamdi
Author
dc.contributor.author
Myroniuk, Solomiia
Author
dc.contributor.author
Najafi, Reza
Author
dc.contributor.author
Nisa, Claudia F.
Author
dc.contributor.author
Nyul, Boglarka
Author
dc.contributor.author
O’Keefe, Paul A.
Author
dc.contributor.author
Osuna, José Javier Olivas
Author
dc.contributor.author
Osin, Evgengy N.
Author
dc.contributor.author
Park, Joonha
Author
dc.contributor.author
Pica, Gennaro
Author
dc.contributor.author
Pierro, Antonio
Author
dc.contributor.author
Rees, Jonas H.
Author
dc.contributor.author
Reitsema, Anne Margit
Author
dc.contributor.author
Resta, Elena
Author
dc.contributor.author
Rullo, Marika
Author
dc.contributor.author
Ryan, Michelle K.
Author
dc.contributor.author
Samekin, Adil
Author
dc.contributor.author
Santtila, Pekka
Author
dc.contributor.author
Sasin, Edyta M.
Author
dc.contributor.author
Schumpe, Birga M.
Author
dc.contributor.author
Selim, Heyla A.
Author
dc.contributor.author
Stanton, Michael Vicente
Author
dc.contributor.author
Sultana, Samiah
Author
dc.contributor.author
Sutton, Robbie M.
Author
dc.contributor.author
Tseliou, Eleftheria
Author
dc.contributor.author
Utsugi, Akira
Author
dc.contributor.author
Van Breen, Jolien Anne
Author
dc.contributor.author
Van Veen, Kees
Author
dc.contributor.author
Vázquez, Alexandra
Author
dc.contributor.author
Wollast, Robin
Author
dc.contributor.author
Yeung, Victoria Wai-Lan
Author
dc.contributor.author
Zand, Somayeh
Author
dc.contributor.author
Zezelj, Iris Lav
Author
dc.contributor.author
Zheng, Bang
Author
dc.contributor.author
Zick, Andreas
Author
dc.contributor.author
Zúñiga Rivas, Claudia Carolina
Author
dc.contributor.author
Belanger, Jocelyn J.
Admission date
dc.date.accessioned
2023-09-22T13:40:08Z
Available date
dc.date.available
2023-09-22T13:40:08Z
Publication date
dc.date.issued
2022
Cita de ítem
dc.identifier.citation
Patterns 3, 100482, April 8, 2022
es_ES
Identifier
dc.identifier.other
10.1016/j.patter.2022.100482
Identifier
dc.identifier.uri
https://repositorio.uchile.cl/handle/2250/195794
Abstract
dc.description.abstract
Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample-exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individuallevel injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior-and some theoretically derived predictors were relatively unimportant.
es_ES
Patrocinador
dc.description.sponsorship
NWO Veni Grant (NWO) VI.Veni.191G.090
New York University Abu Dhabi VCDSF/75-71015
University of Groningen (Sustainable Society)
Instituto de Salud Carlos III - European Regional Development Fund (ERDF) "A way to make Europe'' COV20/00086
University of Groningen (Ubbo Emmius Fund)
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Elsevier
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States