Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
Artículo
Open/ Download
Access note
Acceso abierto
Publication date
2022Metadata
Show full item record
Cómo citar
Van Lissa, Caspar J.
Cómo citar
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
Author
- Van Lissa, Caspar J.;
- Stroebe, Wolfgang;
- VanDellen, Michelle R.;
- Leander, N. Pontus;
- Agostini, Maximilian;
- Draws, Tim;
- Grygoryshyn, Andrii;
- Gützgow, Ben;
- Kreienkamp, Jannis;
- Vetter, Clara S.;
- Abakoumkin, Georgios;
- Khaiyom, Jamilah Hanum Abdul;
- Ahmedi, Vjolica;
- Akkas, Handan;
- Almenara, Carlos A.;
- Atta, Mohsin;
- Bagci, Sabahat Cigdem;
- Basel, Sima;
- Kida, Edona Berisha;
- Bernardo, Allan B. I.;
- Buttrick, Nicholas R.;
- Chobthamkit, Phatthanakit;
- Choi, Hoon-Seok;
- Cristea, Mioara;
- Csaba, Sara;
- Damnjanovic, Kaja;
- Danyliuk, Ivan;
- Dash, Arobindu;
- Di Santo, Daniela;
- Douglas, Karen M.;
- Enea, Violeta;
- Faller, Daiane Gracieli;
- Fitzsimons, Gavan J.;
- Gheorghiu, Alexandra;
- Gómez, Ángel;
- Hamaidia, Ali;
- Han, Qing;
- Helmy, Mai;
- Hudiyana, Joevarian;
- Jeronimus, Bertus F.;
- Jiang, Ding-Yu;
- Jovanovic, Veljko;
- Kamenov, Zeljka;
- Kende, Anna;
- Keng, Shian-Ling;
- Kieu, Tra Thi Thanh;
- Koc, Yasin;
- Kovyazina, Kamila;
- Kozytska, Inna;
- Krause, Joshua;
- Kruglanksi, Arie W.;
- Kurapov, Anton;
- Kutlaca, Maja;
- Lantos, Nora Anna;
- Lemay, Edward P.;
- Lesmana, Cokorda Bagus Jaya;
- Louis, Winnifred R.;
- Lueders, Adrian;
- Malik, Najma Iqbal;
- Martínez, Anton P.;
- McCabe, Kira O.;
- Mehulic, Jasmina;
- Milla, Mirra Noor;
- Mohammed, Idris;
- Molinario, Erica;
- Moyano, Manuel;
- Muhammad, Hayat;
- Mula, Silvana;
- Muluk, Hamdi;
- Myroniuk, Solomiia;
- Najafi, Reza;
- Nisa, Claudia F.;
- Nyul, Boglarka;
- O’Keefe, Paul A.;
- Osuna, José Javier Olivas;
- Osin, Evgengy N.;
- Park, Joonha;
- Pica, Gennaro;
- Pierro, Antonio;
- Rees, Jonas H.;
- Reitsema, Anne Margit;
- Resta, Elena;
- Rullo, Marika;
- Ryan, Michelle K.;
- Samekin, Adil;
- Santtila, Pekka;
- Sasin, Edyta M.;
- Schumpe, Birga M.;
- Selim, Heyla A.;
- Stanton, Michael Vicente;
- Sultana, Samiah;
- Sutton, Robbie M.;
- Tseliou, Eleftheria;
- Utsugi, Akira;
- Van Breen, Jolien Anne;
- Van Veen, Kees;
- Vázquez, Alexandra;
- Wollast, Robin;
- Yeung, Victoria Wai-Lan;
- Zand, Somayeh;
- Zezelj, Iris Lav;
- Zheng, Bang;
- Zick, Andreas;
- Zúñiga Rivas, Claudia Carolina;
- Belanger, Jocelyn J.;
Abstract
Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample-exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individuallevel injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior-and some theoretically derived predictors were relatively unimportant.
Patrocinador
NWO Veni Grant (NWO) VI.Veni.191G.090
New York University Abu Dhabi VCDSF/75-71015
University of Groningen (Sustainable Society)
Instituto de Salud Carlos III - European Regional Development Fund (ERDF) "A way to make Europe'' COV20/00086
University of Groningen (Ubbo Emmius Fund)
Indexation
Artículo de publícación WoS
Quote Item
Patterns 3, 100482, April 8, 2022
Collections
The following license files are associated with this item: