Show simple item record

Professor Advisordc.contributor.advisorLibedinsky Silva, Nicolás
Author(s)dc.creatorFuente Astudillo, Damián Nicolás de la Fuente
Abstractdc.description.abstractLet W be an affine Weyl group with corresponding finite Weyl group Wf . For each λ, a dominant coweight, corresponds an element θ(λ) ∈ W. With N. Libedinsky and D. Plaza, we produce a conjecture called the Geometric Formula predicting the following: the cardinality of the set of elements in W that are lesser or equal to θ(λ) in the Bruhat order, is a linear combination (with coefficients not depending on λ) of the volumes of the faces of the polytope Conv(λ), constructed as the convex hull of the set Wf · λ. We prove the geometric formula for type fA3, by giving general algebraic and geometric constructions for the set ≤ θ(λ). We study the polytope Conv(λ), its faces, and give some formulas to compute their volumes of the corresponding dimension.es_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.uri*
Keywordsdc.subjectGrupos Weyles_ES
Títulodc.titleThe Geometric Formula for affine Weyl groupses_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Departmentuchile.departamentoEscuela de Postgradoes_ES
Facultyuchile.facultadFacultad de Cienciases_ES
uchile.notadetesisuchile.notadetesisMagíster en Ciencias Matemáticases_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States