Mostrar el registro sencillo del ítem

Autordc.contributor.authorIturra Bocaz, Gabriel
Autordc.contributor.authorBravo Márquez, Felipe
Fecha ingresodc.date.accessioned2023-11-15T14:02:26Z
Fecha disponibledc.date.available2023-11-15T14:02:26Z
Fecha de publicacióndc.date.issued2023
Cita de ítemdc.identifier.citationEn: Chen, Hsin-Hsi et-al. (eds.) SIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: Association for Computing Machinery, 2023. pp. 3027–3036 ISBN 978-1-4503-9408-6es_ES
Identificadordc.identifier.other10.1145/3539618.3591908
Identificadordc.identifier.urihttps://repositorio.uchile.cl/handle/2250/196378
Resumendc.description.abstractWord embeddings have become essential components in various information retrieval and natural language processing tasks, such as ranking, document classification, and question answering. However, despite their widespread use, traditional word embedding models present a limitation in their static nature, which hampers their ability to adapt to the constantly evolving language patterns that emerge in sources such as social media and the web (e.g., new hashtags or brand names). To overcome this problem, incremental word embedding algorithms are introduced, capable of dynamically updating word representations in response to new language patterns and processing continuous data streams. This paper presents RiverText, a Python library for training and evaluating incremental word embeddings from text data streams. Our tool is a resource for the information retrieval and natural language processing communities that work with word embeddings in streaming scenarios, such as analyzing social media. The library implements different incremental word embedding techniques, such as Skip-gram, Continuous Bag of Words, and Word Context Matrix, in a standardized framework. In addition, it uses PyTorch as its backend for neural network training. We have implemented a module that adapts existing intrinsic static word embedding evaluation tasks for word similarity and word categorization to a streaming setting. Finally, we compare the implemented methods with different hyperparameter settings and discuss the results. Our open-source library is available at https://github.com/dccuchile/rivertext.es_ES
Publicadordc.publisherAssociation for Computing Machineryes_ES
Tipo de licenciadc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link a Licenciadc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Fuentedc.sourceSIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrievales_ES
Palabras clavesdc.subjectWord embeddinges_ES
Palabras clavesdc.subjectIncremental learninges_ES
Palabras clavesdc.subjectData streamses_ES
Títulodc.titleRiverText: A Python Library for Training and Evaluating Incremental Word Embeddings from Text Data Streamses_ES
Tipo de documentodc.typeCapítulo de libroes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogadoruchile.catalogadorlajes_ES


Descargar archivo

Icon

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivs 3.0 United States
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivs 3.0 United States