Dada una curva el´ıptica E/Q, la conjetura de Birch-Swinnerton-Dyer predice que
el rango de E y el orden de anulaci´on de L(E, s) en s = 1 son iguales. M´as a´un, una
formulaci´on m´as fuerte de esta conjetura relaciona el coeficiente l´ıder de L(E, s)
en s = 1 con invariantes aritm´eticos de E. En 1987 Mazur y Tate formularon un
an´alogo refinado a estas conjeturas en un layer finito M, donde la funci´on L es
reemplazada por el elemento de Mazur-Tate ΘM. Propondremos dos conjeturas
similares a las presentadas por Mazur y Tate y presentaremos evidencia numerica
soportando estas conjeturas.
es_ES
Abstract
dc.description.abstract
Given an elliptic curve E/Q, the Birch-Swinnerton-Dyer conjecture predicts that
the rank of E and the vanishing order of L(E, s) at s = 1 are equal. Furthermore,
a stronger formulation of this conjecture relates the leading coefficient of L(E, s) at
s = 1 and arithmetic invariants of E. In 1987 Mazur and Tate formulated refined
analogs of these conjectures at a finite layer M, where the L-function is replaced by
the Mazur-Tate element ΘM. We will state two conjectures similar to conjectures
presented by Mazur and Tate, and present numerical evidence supporting these
conjectures.
es_ES
Lenguage
dc.language.iso
en
es_ES
Publisher
dc.publisher
Universidad de Chile
es_ES
Type of license
dc.rights
Attribution-NonCommercial-NoDerivs 3.0 United States