Show simple item record

Authordc.contributor.authorAllard, Denis
Authordc.contributor.authorEmery, Xavier Mathieu
Authordc.contributor.authorLacaux, Céline
Authordc.contributor.authorLantuéjoul, Christian
Admission datedc.date.accessioned2024-03-12T14:33:43Z
Available datedc.date.available2024-03-12T14:33:43Z
Publication datedc.date.issued2023
Cita de ítemdc.identifier.citationEn: Avalos Sotomayor, S.A., Ortiz, J.M., Srivastava, R.M. (eds) Geostatistics Toronto 2021. Cham, Switzerland: Springer, 2023. pp 43–49. ISBN 978-3-031-19845-8es_ES
Identifierdc.identifier.other10.1007/978-3-031-19845-8_4
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/197371
Abstractdc.description.abstractThe nonseparable Gneiting covariance has become a standard to model spatio-temporal random fields. Its definition relies on a completely monotone function associated with the spatial structure and a conditionally negative semidefinite function associated with the temporal structure. This work addresses the problem of simulating stationary Gaussian random fields with a Gneiting-type covariance. Two algorithms, in which the simulated field is obtained through a combination of cosine waves are presented and illustrated with synthetic examples. In the first algorithm, the temporal frequency is defined on the basis of a temporal random field with stationary Gaussian increments, whereas in the second algorithm the temporal frequency is drawn from the spectral measure of the covariance conditioned to the spatial frequency. Both algorithms perfectly reproduce the correlation structure with minimal computational cost and memory footprint.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherSpringeres_ES
Seriedc.relation.ispartofseriesSpringer Proceedings in Earth and Environmental Sciences;
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Sourcedc.sourceGeostatistics Toronto 2021es_ES
Keywordsdc.subjectSubstitution random fieldses_ES
Keywordsdc.subjectSpectral simulationes_ES
Keywordsdc.subjectSpectral measurees_ES
Keywordsdc.subjectCentral limit approximationes_ES
Títulodc.titleSimulation of Stationary Gaussian Random Fields with a Gneiting Spatio-Temporal Covariancees_ES
Document typedc.typeCapítulo de libroes_ES
dc.description.versiondc.description.versionVersión publicada - versión final del editores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorlajes_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States