Show simple item record

Professor Advisordc.contributor.advisorLibedinsky Silva, Nicolás
Author(s)dc.creatorFuente Astudillo, Damián Nicolás de la Fuente
Admission datedc.date.accessioned2023-10-17T14:03:01Z
Available datedc.date.available2023-10-17T14:03:01Z
Publication datedc.date.issued2022
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/196089
Abstractdc.description.abstractLet W be an affine Weyl group with corresponding finite Weyl group Wf . For each λ, a dominant coweight, corresponds an element θ(λ) ∈ W. With N. Libedinsky and D. Plaza, we produce a conjecture called the Geometric Formula predicting the following: the cardinality of the set of elements in W that are lesser or equal to θ(λ) in the Bruhat order, is a linear combination (with coefficients not depending on λ) of the volumes of the faces of the polytope Conv(λ), constructed as the convex hull of the set Wf · λ. We prove the geometric formula for type fA3, by giving general algebraic and geometric constructions for the set ≤ θ(λ). We study the polytope Conv(λ), its faces, and give some formulas to compute their volumes of the corresponding dimension.es_ES
Lenguagedc.language.isoenes_ES
Publisherdc.publisherUniversidad de Chilees_ES
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 United States*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/us/*
Keywordsdc.subjectGrupos Weyles_ES
Títulodc.titleThe Geometric Formula for affine Weyl groupses_ES
Document typedc.typeTesises_ES
dc.description.versiondc.description.versionVersión original del autores_ES
dcterms.accessRightsdcterms.accessRightsAcceso abiertoes_ES
Catalogueruchile.catalogadorjmoes_ES
Departmentuchile.departamentoEscuela de Postgradoes_ES
Facultyuchile.facultadFacultad de Cienciases_ES
uchile.gradoacademicouchile.gradoacademicoMagisteres_ES
uchile.notadetesisuchile.notadetesisMagíster en Ciencias Matemáticases_ES


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 United States