About
Contact
Help
Sending publications
How to publish
Advanced Search
View Item 
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Pregrado
  • View Item
  •   Home
  • Facultad de Ciencias Físicas y Matemáticas
  • Tesis Pregrado
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse byCommunities and CollectionsDateAuthorsTitlesSubjectsThis CollectionDateAuthorsTitlesSubjects

My Account

Login to my accountRegister
Biblioteca Digital - Universidad de Chile
Revistas Chilenas
Repositorios Latinoamericanos
Tesis LatinoAmericanas
Tesis chilenas
Related linksRegistry of Open Access RepositoriesOpenDOARGoogle scholarCOREBASE
My Account
Login to my accountRegister

Valorización de los Usuarios de Tarjeta de Crédito de una Tienda por Departamentos Incorporando el Riesgo Financiero

Tesis
Thumbnail
Open/Download
IconValorizacion-de-los-usuarios-de-tarjeta-de-credito-de-una-tienda-por-departamentos.pdf (4.109Mb)
Publication date
2009
Metadata
Show full item record
Cómo citar
Montoya Moreira, Ricardo
Cómo citar
Valorización de los Usuarios de Tarjeta de Crédito de una Tienda por Departamentos Incorporando el Riesgo Financiero
.
Copiar
Cerrar

Author
  • Eguia Jacob, Ricardo Andrés;
Professor Advisor
  • Montoya Moreira, Ricardo;
Abstract
Las grandes tiendas por departamento han ampliado su gama de productos ofrecidos, incluyendo los servicios financieros, desarrollando así sus propias tarjetas de crédito, que permiten mayor flexibilidad de pago y mayor alcance de productos. Sin embargo, existe una diversa cartera de clientes, como algunos que no compran regularmente a cuotas y otros que no cumplen con sus pagos, introduciendo así el riesgo. Entonces surge la importancia de identificar cuáles son los clientes más valiosos para la empresa. El presente trabajo de título se desarrolla en una empresa de retail la cual cuenta con su propia tarjeta de crédito. La memoria tiene como objetivo estimar el valor de los clientes incorporando el riesgo financiero. Para cumplirlo, se hace énfasis al estudio de dos variables fundamentales: El interés generado por el uso de la tarjeta y el riesgo. El interés depende de muchos factores como lo son el holding, el número de cuotas, el monto de la compra, entre otros. Esto convierte el valor del interés en una variable de alta volatilidad que no permite predecir un valor exacto de este. Por lo tanto se decide ordenar a los clientes según su valor, dividiéndolos en 4 grupos. Para determinar el valor de los clientes se utilizará la fórmula de Lifetime Value, considerando como margen el interés que pagan los clientes al pagar por cuotas y por otra parte el riesgo financiero. Para estimar el interés, se utilizan 3 conjuntos de variables distintos combinados con 4 tipos de modelos de demanda: Lineal, Log-Normal, Poisson y Binomial Negativo; para así, identificar que combinación de estos permite valorizar y ordenar a los clientes con mayor nivel de precisión utilizando la matriz de confusión como herramienta de medición. Los dos primeros conjuntos de variables son referentes a las variables RFM mientras que el otro utiliza además variables demográficas y otras asociadas a la tarjeta. Mediante un análisis por cuartiles, se obtiene que el cuartil superior entrega el 80% del margen interés a la firma mientras que el resto entrega 15%, 4% y 1%. El valor de cada grupo es de $256Mil, $41Mil, $13Mil y $1,6Mil respectivamente, donde el cuartil superior e inferior muestran mayor estabilidad que los cuartiles centrales al mantenerse un mayor número de clientes en el mismo grupo de un periodo a otro. Se identifica que el modelo de poisson presenta los mejores resultados de distinción de clientes para cada conjunto de variables mostrando una leve superioridad con el set RFM, llegando así a ubicar aproximadamente el 49% de los clientes en su grupo correspondiente, el 43% en la vecindad y tan solo el 8% en los grupos más apartados. Destacando su mayor nivel de acierto para el mejor y peor cuartil con un 58,5% y 57% de acierto respetivamente. En conclusión, la metodología propuesta permitiría a la empresa identificar a sus mejores clientes tomando en consideración el riesgo asociado.
General note
Ingeniero Civil Industrial
Identifier
URI: https://repositorio.uchile.cl/handle/2250/103567
Collections
  • Tesis Pregrado
xmlui.footer.title
31 participating institutions
More than 73,000 publications
More than 110,000 topics
More than 75,000 authors
Published in the repository
  • How to publish
  • Definitions
  • Copyright
  • Frequent questions
Documents
  • Dating Guide
  • Thesis authorization
  • Document authorization
  • How to prepare a thesis (PDF)
Services
  • Digital library
  • Chilean academic journals portal
  • Latin American Repository Network
  • Latin American theses
  • Chilean theses
Dirección de Servicios de Información y Bibliotecas (SISIB)
Universidad de Chile

© 2020 DSpace
  • Access my account