Implementación de un sistema reconocedor de eventos en videos, con un clasificador K-NN
Tesis
Open/ Download
Publication date
2014Metadata
Show full item record
Cómo citar
Bustos Cárdenas, Benjamín
Cómo citar
Implementación de un sistema reconocedor de eventos en videos, con un clasificador K-NN
Author
Professor Advisor
Abstract
Hoy en día el fácil acceso a la tecnología permite al ser humano registrar, con un mínimo esfuerzo, eventos de interés en su vida. Como consecuencia se genera una gran cantidad de información multimedia, en particular videos, cuyo análisis de contenido es muy difícil de automatizar, siendo deseable el uso de técnicas de minería de datos y visión computacional para aprovechar esta oportunidad. En este contexto, surge la inquietud de clasificar dichos objetos en base a los eventos presentes en ellos, y de esa forma generar una herramienta predictiva que pueda ser usada posteriormente en aplicaciones de diversas áreas, como por ejemplo, en la publicidad.
El presente trabajo de título da cuenta de la implementación de un sistema reconocedor de eventos en video, además de la experimentación con el mismo, la posterior modificación de su componente de clasificación, y la comparación de ambas versiones en términos de eficacia. El tipo de datos que emplea el sistema corresponde a videos de consumidor, los que fueron recolectados por una comunidad científica y agrupados en un dataset de uso público. El sistema se basa en un reconocedor de eventos planteado en un artículo, y está formado por descriptores de características, un módulo de clasificación SVM y un módulo de creación de histogramas. La modificación planteada consiste en cambiar SVM por un clasificador K-NN.
Para cumplir con los objetivos mencionados anteriormente, se sigue la implementación propuesta en el artículo, esto significa que, primero se descarga el dataset y se implementan los descriptores escogidos, posteriormente, se implementa el clasificador SVM y se compara el sistema preliminar con las mediciones de eficacia del artículo, se repite el proceso hasta obtener valores similares y considerar que el sistema ha sido ajustado correctamente. Finalmente, se implementa el módulo K-NN y se comparan ambos sistemas en base a las métricas de rendimiento.
A partir de los resultados de eficacia de las dos versiones, se muestra que el clasificador SVM es una mejor alternativa que K-NN para enfrentar el problema de reconocimiento de eventos en videos de consumidor. Esto es válido para los descriptores con los que se probó el sistema, pero puede no ser cierto si se utiliza otro conjunto de descriptores. Además, se deja en evidencia la dificultad que presenta el manejo de grandes volúmenes de información, y la necesidad de soluciones para su procesamiento.
General note
Ingeniero Civil en Computación
Identifier
URI: https://repositorio.uchile.cl/handle/2250/117017
Collections
The following license files are associated with this item: