Show simple item record

Authordc.contributor.authorAlonso, Máximo F. 
Authordc.contributor.authorCorwin, Dennis L. es_CL
Authordc.contributor.authorOster, James D. es_CL
Authordc.contributor.authorMaas, John es_CL
Authordc.contributor.authorKaffka, Stephen R. es_CL
Admission datedc.date.accessioned2014-01-15T20:36:38Z
Available datedc.date.available2014-01-15T20:36:38Z
Publication datedc.date.issued2013
Cita de ítemdc.identifier.citationSustainability 2013, 5, 3839-3857en_US
Identifierdc.identifier.issn2071-1050
Identifierdc.identifier.otherdoi:10.3390/su5093839
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/120222
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractSalinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV). We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-grazing system under saline conditions. The model uses rainfall and irrigation water amounts, irrigation water quality, soil, plant, and atmospheric variables to predict Bermuda grass (Cynodon dactylon (L.) Pers.) growth, quality, and use by cattle. Simulations based on field measurements and a related container study indicate that although soil chemical composition is affected by irrigation water quality, irrigation timing and frequency can be used to mitigate salt and trace mineral accumulation. Bermuda grass yields of up to 12 Mg dry matter (DM)·ha−1 were observed at the field site and predicted by the model. Forage yield and quality supports un-supplemented cattle stocking rates of 1.0 to 1.2 animal units (AU)·ha−1. However, a balance must be achieved between stocking rate, desired average daily gain, accumulation of salts in the soil profile, and potential pollution of ground water from drainage and leaching. Using available weather data, crop-specific parameter values and field scale measurements of soil salinity and nitrogen levels, the model can be used by farmers growing forages on saline soils elsewhere, to sustain forage and livestock production under similarly marginal conditions.en_US
Lenguagedc.language.isoenen_US
Type of licensedc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectBermuda grassen_US
Títulodc.titleModeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of Californiaen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Chile
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 3.0 Chile