Show simple item record

Authordc.contributor.authorVan der Plas, Gerrit es_CL
Authordc.contributor.authorPérez M., Sebastián es_CL
Authordc.contributor.authorDent, William R. F. es_CL
Authordc.contributor.authorFomalont, Ed es_CL
Authordc.contributor.authorHagelberg, Janis es_CL
Authordc.contributor.authorHales, Antonio es_CL
Authordc.contributor.authorJordán, Andrés es_CL
Authordc.contributor.authorMawet, Dimitri es_CL
Authordc.contributor.authorMénard, Francois es_CL
Authordc.contributor.authorWootten, Al es_CL
Authordc.contributor.authorWilner, David es_CL
Authordc.contributor.authorHughes, A. Meredith es_CL
Authordc.contributor.authorSchreiber, Matthias R. es_CL
Authordc.contributor.authorGirard, Julien H. es_CL
Authordc.contributor.authorErcolano, Bárbara es_CL
Authordc.contributor.authorCanovas, Héctor es_CL
Authordc.contributor.authorRomán, Pablo E. es_CL
Authordc.contributor.authorCasassus Montero, Simón 
Authordc.contributor.authorSalinas, Vachail es_CL
Admission datedc.date.accessioned2014-04-17T19:46:04Z
Available datedc.date.available2014-04-17T19:46:04Z
Publication datedc.date.issued2013-01-10
Cita de ítemdc.identifier.citationNature 493, Nº7431. 191–194 (10 January 2013).en_US
Identifierdc.identifier.otherdoi:10.1038
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/126465
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractThe formation of gaseous giant planets is thought to occur in the first few million years after stellar birth. Models1 predict that the process produces a deep gap in the dust component (shallower in the gas2, 3, 4). Infrared observations of the disk around the young star HD 142527 (at a distance of about 140 parsecs from Earth) found an inner disk about 10 astronomical units (AU) in radius5 (1 AU is the Earth–Sun distance), surrounded by a particularly large gap6 and a disrupted7 outer disk beyond 140 AU. This disruption is indicative of a perturbing planetary-mass body at about 90 AU. Radio observations8, 9 indicate that the bulk mass is molecular and lies in the outer disk, whose continuum emission has a horseshoe morphology8. The high stellar accretion rate10 would deplete the inner disk11 in less than one year, and to sustain the observed accretion matter must therefore flow from the outer disk and cross the gap. In dynamical models, the putative protoplanets channel outer-disk material into gap-crossing bridges that feed stellar accretion through the inner disk12. Here we report observations of diffuse CO gas inside the gap, with denser HCO+ gas along gap-crossing filaments. The estimated flow rate of the gas is in the range of 7 × 10−9 to 2 × 10−7 solar masses per year, which is sufficient to maintain accretion onto the star at the present rate.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherNature Publishing Group
Keywordsdc.subjectInterstellar mediumen_US
Títulodc.titleObservations of gas flows inside a protoplanetary gapen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record