A novel, fully automated pipeline for period estimation in the EROS 2 data set
Artículo
Publication date
2015Metadata
Show full item record
Cómo citar
Protopapas, Pavlos
Cómo citar
A novel, fully automated pipeline for period estimation in the EROS 2 data set
Author
Abstract
We present a new method to discriminate periodic from nonperiodic irregularly sampled light curves. We introduce a periodic kernel and maximize a similarity measure derived from information theory to estimate the periods and a discriminator factor. We tested the method on a data set containing 100,000 synthetic periodic and nonperiodic light curves with various periods, amplitudes, and shapes generated using a multivariate generative model. We correctly identified periodic and nonperiodic light curves with a completeness of similar to 90% and a precision of similar to 95%, for light curves with a signal-to-noise ratio (S/N) larger than 0.5. We characterize the efficiency and reliability of the model using these synthetic light curves and apply the method on the EROS-2 data set. A crucial consideration is the speed at which the method can be executed. Using a hierarchical search and some simplification on the parameter search, we were able to analyze 32.8 million light curves in similar to 18 hr on a cluster of GPGPUs. Using the sensitivity analysis on the synthetic data set, we infer that 0.42% of the sources in the LMC and 0.61% of the sources in the SMC show periodic behavior. The training set, catalogs, and source code are all available at http://timemachine.iic.harvard.edu.
General note
Artículo de publicación ISI
Patrocinador
FONDECYT 1110701,
1140816
Identifier
URI: https://repositorio.uchile.cl/handle/2250/132519
DOI: DOI: 10.1088/0067-0049/216/2/25
Quote Item
Astrophysical Journal Supplement Series Volumen: 216 Número: 2 Número de artículo: 25
Collections
The following license files are associated with this item: