Show simple item record

Authordc.contributor.authorMontecinos Armijo, Matías 
Authordc.contributor.authorCuadra, Jorge 
Authordc.contributor.authorPérez, Sebastián 
Authordc.contributor.authorBaruteau, C. 
Authordc.contributor.authorCasassus Montero, Simón 
Admission datedc.date.accessioned2015-08-18T19:42:44Z
Available datedc.date.available2015-08-18T19:42:44Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationThe Astrophysical Journal, 806:253 (12pp), 2015 June 20en_US
Identifierdc.identifier.otherdoi:10.1088/0004-637X/806/2/253
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/132877
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractWhile recent observational progress is converging on the detection of compact regions of thermal emission due to embedded protoplanets, further theoretical predictions are needed to understand the response of a protoplanetary disk to the radiative feedback from planet formation. This is particularly important to make predictions for the observability of circumplanetary regions. In this work we use 2D hydrodynamical simulations to examine the evolution of a viscous protoplanetary disk in which a luminous Jupiter-mass planet is embedded. We use an energy equation that includes the radiative heating of the planet as an additional mechanism for planet formation feedback. Several models are computed for planet luminosities ranging from 10−5 to 10−3 solar luminosities. We find that the planet radiative feedback enhances the disk’s accretion rate at the planet’s orbital radius, producing a hotter and more luminous environement around the planet, independently of the prescription used to model the disk’s turbulent viscosity. We also estimate the thermal signature of the planet feedback for our range of planet luminosities, finding that the emitted spectrum of a purely active disk, without passive heating, is appreciably modified in the infrared. We simulate the protoplanetary disk around HD 100546 where a planet companion is located at about 68 AU from the star. Assuming the planet mass is five Jupiter masses and its luminosity is 2.5 10 L ~ ´ -4 , we find that the radiative feedback of the planet increases the luminosity of its ∼5 AU circumplanetary disk from 10 L -5  (without feedback) to 10 L -3 , corresponding to an emission of ~1 mJy in the L¢ band after radiative transfer calculations, a value that is in good agreement with HD 100546b observations.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherThe American Astronomical Societyen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectaccretion, accretion disksen_US
Keywordsdc.subjecthydrodynamicsen_US
Keywordsdc.subjectmethods: numericalen_US
Keywordsdc.subjectplaneten_US
Keywordsdc.subjectdisk interactionsen_US
Keywordsdc.subjectplanetary systemsen_US
Keywordsdc.subjectprotoplanetary disksen_US
Títulodc.titleProtoplanetary Disks Including Radiative Feedback from Accreting Planetsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile