Show simple item record

Authordc.contributor.authorCamps, Peter 
Authordc.contributor.authorMisselt, Karl 
Authordc.contributor.authorBianchi, Simone 
Authordc.contributor.authorLunttila, Tuomas 
Authordc.contributor.authorPinte, Christophe 
Authordc.contributor.authorNatale, Giovanni 
Authordc.contributor.authorJuvela, Mika 
Authordc.contributor.authorFischera, Joerg 
Authordc.contributor.authorFitzgerald, Michael P. 
Authordc.contributor.authorGordon, Karl 
Authordc.contributor.authorBaes, Maarten 
Authordc.contributor.authorSteinacker, Jürgen 
Admission datedc.date.accessioned2015-11-29T21:04:53Z
Available datedc.date.available2015-11-29T21:04:53Z
Publication datedc.date.issued2015
Cita de ítemdc.identifier.citationA&A 580, A87 (2015)en_US
Identifierdc.identifier.otherDOI: 10.1051/0004-6361/201525998
Identifierdc.identifier.urihttps://repositorio.uchile.cl/handle/2250/135318
General notedc.descriptionArtículo de publicación ISIen_US
Abstractdc.description.abstractContext. Thermal emission by stochastically heated dust grains (SHGs) plays an important role in the radiative transfer (RT) problem for a dusty medium. It is therefore essential to verify that RT codes properly calculate the dust emission before studying the e ffects of spatial distribution and other model parameters on the simulated observables. Aims. We define an appropriate problem for benchmarking dust emissivity calculations in the context of RT simulations, specifically including the emission from SHGs. Our aim is to provide a self-contained guide for implementors of such functionality and to off er insight into the e ffects of the various approximations and heuristics implemented by the participating codes to accelerate the calculations. Methods. The benchmark problem definition includes the optical and calorimetric material properties and the grain size distributions for a typical astronomical dust mixture with silicate, graphite, and PAH components. It also includes a series of analytically defined radiation fields to which the dust population is to be exposed and instructions for the desired output. We processed this problem using six RT codes participating in this benchmark e ffort and compared the results to a reference solution computed with the publicly available dust emission code DustEM. Results. The participating codes implement di erent heuristics to keep the calculation time at an acceptable level.We study the e ects of these mechanisms on the calculated solutions and report on the level of (dis)agreement between the participating codes. For all but the most extreme input fields, we find agreement within 10% across the important wavelength range 3 m 1000 m. Conclusions. We conclude that the relevant modules in RT codes can and do produce fairly consistent results for the emissivity spectra of SHGs. This work can serve as a reference for implementors of dust RT codes, and it will pave the way for a more extensive benchmark e ffort focusing on the RT aspects of the various codes.en_US
Lenguagedc.language.isoenen_US
Publisherdc.publisherEDP Sciencesen_US
Type of licensedc.rightsAtribución-NoComercial-SinDerivadas 3.0 Chile*
Link to Licensedc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/*
Keywordsdc.subjectRadiation mechanisms: thermalen_US
Keywordsdc.subjectDust, extinctionen_US
Keywordsdc.subjectInfrared: ISMen_US
Keywordsdc.subjectRadiative transferen_US
Keywordsdc.subjectMethods: numericalen_US
Títulodc.titleBenchmarking the calculation of stochastic heating and emissivity of dust grains in the context of radiative transfer simulationsen_US
Document typedc.typeArtículo de revista


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 3.0 Chile
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 Chile